Lasers in Medical Science

, Volume 32, Issue 6, pp 1289–1300 | Cite as

Autofluorescence spectroscopy for nerve-sparing laser surgery of the head and neck—the influence of laser-tissue interaction

  • Florian Stelzle
  • Maximilian Rohde
  • Max Riemann
  • Nicolai Oetter
  • Werner Adler
  • Katja Tangermann-Gerk
  • Michael Schmidt
  • Christian KnipferEmail author
Original Article


The use of remote optical feedback systems represents a promising approach for minimally invasive, nerve-sparing laser surgery. Autofluorescence properties can be exploited for a fast, robust identification of nervous tissue. With regard to the crucial step towards clinical application, the impact of laser ablation on optical properties in the vicinity of structures of the head and neck has not been investigated up to now. We acquired 24,298 autofluorescence spectra from 135 tissue samples (nine ex vivo tissue types from 15 bisected pig heads) both before and after ER:YAG laser ablation. Sensitivities, specificities, and area under curve(AUC) values for each tissue pair as well as the confusion matrix were statistically calculated for pre-ablation and post-ablation autofluorescence spectra using principal component analysis (PCA), quadratic discriminant analysis (QDA), and receiver operating characteristics (ROC). The confusion matrix indicated a highly successful tissue discrimination rate before laser exposure, with an average classification error of 5.2%. The clinically relevant tissue pairs nerve/cancellous bone and nerve/salivary gland yielded an AUC of 100% each. After laser ablation, tissue discrimination was feasible with an average classification accuracy of 92.1% (average classification error 7.9%). The identification of nerve versus cancellous bone and salivary gland performed very well with an AUC of 100 and 99%, respectively. Nerve-sparing laser surgery in the area of the head and neck by means of an autofluorescence-based feedback system is feasible even after ER-YAG laser-tissue interactions. These results represent a crucial step for the development of a clinically applicable feedback tool for laser surgery interventions in the oral and maxillofacial region.


Laser surgery Autofluorescence Laser-tissue interaction Tissue discrimination Remote feedback Optical sensor 



The authors gratefully acknowledge the funding by the ELAN-Funds, University of Erlangen-Nuremberg (AZ:, and the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German National Science Foundation (DFG; AZ: STE 1877/2-1) as part of the Excellence Initiative.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The experiments presented in the manuscript do not contain studies with human participants or live animals performed by any of the authors. The studies were performed on meat samples taken from the local slaughterhouse. The welfare of animals has not been affected in any kind of way. Neither animal keeping nor intervention on live animals has been conducted. No animals were sacrificed for the sole purpose of this study. All procedures performed in the present study were in accordance with the 1964 Helsinki Declaration and its later amendments. Informed consent was obtained from all authors.


  1. 1.
    Spyropoulos B (2011) 50 years LASERS: in vitro diagnostics, clinical applications and perspectives. Clin Lab 57(3–4):131–142PubMedGoogle Scholar
  2. 2.
    Carruth JA (1984) Lasers in medicine and surgery. J Med Eng Technol 8(4):161–167CrossRefPubMedGoogle Scholar
  3. 3.
    Niemz MH (2007) Laser-tissue interactions: fundamentals and applications. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  4. 4.
    Baxter GD, Walsh DM, Allen JM, Lowe AS, Bell AJ (1994) Effects of low intensity infrared laser irradiation upon conduction in the human median nerve in vivo. Exp Physiol 79(2):227–234CrossRefPubMedGoogle Scholar
  5. 5.
    Mack KF, Hagner D, Leinung M, Heermann R (2001) Facial nerve: electrophysiological reactions during in-vitro treatment with the ER: YAG laser. In: Laser florence 2000: a window on the laser medicine world, 34, Proc. SPIE 4606, p 34Google Scholar
  6. 6.
    Monici M (2005) Cell and tissue autofluorescence research and diagnostic applications. iotechnol Annu Rev 11:227–256CrossRefGoogle Scholar
  7. 7.
    Drakaki E, Makropoulou M, Serafetinides AA (2008) In vitro fluorescence measurements and Monte Carlo simulation of laser irradiation propagation in porcine skin tissue. Lasers Med Sci 23(3):267–276CrossRefPubMedGoogle Scholar
  8. 8.
    Kollias N, Gillies R, Moran M, Kochevar IE, Anderson RR (1998) Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging. J Invest Dermatol 111(5):776–780CrossRefPubMedGoogle Scholar
  9. 9.
    De Veld DC, Witjes MJ, Sterenborg HJ, Roodenburg JL (2005) The status of in vivo autofluorescence spectroscopy and imaging for oral oncology. Oral Oncol 41(2):117–131CrossRefPubMedGoogle Scholar
  10. 10.
    Betz CS, Stepp H, Janda P, Arbogast S, Grevers G, Baumgartner R, Leunig A (2002) A comparative study of normal inspection, autofluorescence and 5-ALA-induced PPIX fluorescence for oral cancer diagnosis. Int J Cancer 97(2):245–252CrossRefPubMedGoogle Scholar
  11. 11.
    Heintzelman DL, Utzinger U, Fuchs H, Zuluaga A, Gossage K, Gillenwater AM, Jacob R, Kemp B, Richards-Kortum RR (2000) Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy. Photochem Photobiol 72(1):103–113CrossRefPubMedGoogle Scholar
  12. 12.
    Mallia RJ, Thomas SS, Mathews A, Kumar R, Sebastian P, Madhavan J, Subhash N (2008) Laser-induced autofluorescence spectral ratio reference standard for early discrimination of oral cancer. Cancer 112(7):1503–1512CrossRefPubMedGoogle Scholar
  13. 13.
    Betz CS, Mehlmann M, Rick K, Stepp H, Grevers G, Baumgartner R, Leunig A (1999) Autofluorescence imaging and spectroscopy of normal and malignant mucosa in patients with head and neck cancer. Lasers Surg Med 25(4):323–334CrossRefPubMedGoogle Scholar
  14. 14.
    Keijzer M, Richards-Kortum RR, Jacques SL, Feld MS (1989) Fluorescence spectroscopy of turbid media: Autofluorescence of the human aorta. Appl Opt 28(20):4286–4292CrossRefPubMedGoogle Scholar
  15. 15.
    Splinter R, Cheong WF, van Gemert MJ, Welch AJ (1989) In vitro optical properties of human and canine brain and urinary bladder tissues at 633 nm. Lasers Surg Med 9(1):37–41CrossRefPubMedGoogle Scholar
  16. 16.
    Chen B, Thomsen SL, Thomas RJ, Oliver J, Welch AJ (2008) Histological and modeling study of skin thermal injury to 2.0 microm laser irradiation. Lasers Surg Med 40(5):358–370CrossRefPubMedGoogle Scholar
  17. 17.
    Kim BM, Feit MD, Rubenchik AM, Mammini BM, Da Silva LB (1998) Optical feedback signal for ultrashort laser pulse ablation of tissue 1. Appl Surf Sci 127–129:857–862CrossRefGoogle Scholar
  18. 18.
    Yaroslavsky AN, Schulze PC, Yaroslavsky IV, Schober R, Ulrich F, Schwarzmaier HJ (2002) Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys Med Biol 47(12):2059–2073CrossRefPubMedGoogle Scholar
  19. 19.
    Stelzle F, Knipfer C, Adler W, Rohde M, Oetter N, Nkenke E, Schmidt M, Tangermann-Gerk K (2013) Tissue discrimination by uncorrected autofluorescence spectra: a proof-of-principle study for tissue-specific laser surgery. Sensors (Basel, Switzerland) 13(10):13717–13731CrossRefGoogle Scholar
  20. 20.
    Walsh JT Jr, Deutsch TF (1989) Er:YAG laser ablation of tissue: measurement of ablation rates. Lasers Surg Med 9(4):327–337CrossRefPubMedGoogle Scholar
  21. 21.
    Whiting P, Dowden J, Kapadia P, Davis M (1992) A one-dimensional mathematical model of laser induced thermal ablation of biological tissue. Lasers Med Sci 7(1):357–368CrossRefGoogle Scholar
  22. 22.
    Andrea Peters, Hothorn T (2000) ipred: Improved predictors. R package version 0.8-8. Accessed 18 Nov 2013
  23. 23.
    Agbaje JO, Salem AS, Lambrichts I, Jacobs R, Politis C (2015) Systematic review of the incidence of inferior alveolar nerve injury in bilateral sagittal split osteotomy and the assessment of neurosensory disturbances. Int J Oral Maxillofac Surg 44(4):447–451CrossRefPubMedGoogle Scholar
  24. 24.
    Ellingson TW, Cohen JI, Andersen P (2003) The impact of malignant disease on facial nerve function after parotidectomy. Laryngoscope 113(8):1299–1303CrossRefPubMedGoogle Scholar
  25. 25.
    Bergauer B, Knipfer C, Amann A, Rohde M, Tangermann-Gerk K, Adler W, Schmidt M, Nkenke E, Stelzle F (2015) Does laser surgery interfere with optical nerve identification in maxillofacial hard and soft tissue?—an experimental ex vivo study. Sensors (Basel, Switzerland) 15(10):25416–25432CrossRefGoogle Scholar
  26. 26.
    Stelzle F, Adler W, Zam A, Tangermann-Gerk K, Knipfer C, Douplik A, Schmidt M, Nkenke E (2012) In vivo optical tissue differentiation by diffuse reflectance spectroscopy: preliminary results for tissue-specific laser surgery. Surg Innov 19(4):385–393CrossRefPubMedGoogle Scholar
  27. 27.
    Stelzle F, Knipfer C, Bergauer B, Rohde M, Adler W, Tangermann-Gerk K, Nkenke E, Schmidt M (2014) Optical nerve identification in head and neck surgery after Er:YAG laser ablation. Lasers Med Sci 29(5):1641–1648CrossRefPubMedGoogle Scholar
  28. 28.
    Engelhardt A, Kanawade R, Knipfer C, Schmid M, Stelzle F, Adler W (2014) Comparing classification methods for diffuse reflectance spectra to improve tissue specific laser surgery. BMC Med Res Methodol 14:91CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Stelzle F, Terwey I, Knipfer C, Adler W, Tangermann-Gerk K, Nkenke E, Schmidt M (2012) The impact of laser ablation on optical soft tissue differentiation for tissue specific laser surgery—an experimental ex vivo study. J Transl Med 10:123CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    McKenzie AL (1990) Physics of thermal processes in laser-tissue interaction. Phys Med Biol 35(9):1175–1209CrossRefPubMedGoogle Scholar
  31. 31.
    Ross MH, Pawlina W (2006) Histology: a text and atlas: with correlated cell and molecular biology. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  32. 32.
    Drzazga ZK, Kluczewska-Galka A, Michnik A, Kaszuba M, Trzeciak H (2011) Fluorescence spectroscopy as tool for bone development monitoring in newborn rats. JJ Fluoresc 21(3):851–857CrossRefGoogle Scholar
  33. 33.
    Giovannacci I, Meleti M, Corradi D, Vescovi P (2016) Clinical differences in autofluorescence between viable and nonvital bone: a case report with histopathologic evaluation performed on medication-related osteonecrosis of the jaws. J Oral Maxillofac Surg S0278-2391(16):31249–31246Google Scholar
  34. 34.
    Prentice AI (1965) Bone autofluorescence and mineral content. Nature 206(989):1167CrossRefPubMedGoogle Scholar
  35. 35.
    Lerebours C, Thomas CD, Clement JG, Buenzli PR, Pivonka P (2015) The relationship between porosity and specific surface in human cortical bone is subject specific. Bone 72:109–117CrossRefPubMedGoogle Scholar
  36. 36.
    Reznikov N, Shahar R, Weiner S (2014) Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization. Bone 59:93–104CrossRefPubMedGoogle Scholar
  37. 37.
    Prentice AI (1967) Autofluorescence of bone tissues. J Clin Pathol 20(5):717–719CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Koenig K, Schneckenburger H (1994) Laser-induced autofluorescence for medical diagnosis. J Fluoresc 4(1):17–40CrossRefPubMedGoogle Scholar
  39. 39.
    Willems NMBK, Langenbach GEJ, Everts V, Mulder L, Grünheid T, Bank RA, Zentner A, van Eijden TMGJ (2010) Age-related changes in collagen properties and mineralization in cancellous and cortical bone in the porcine mandibular condyle. Calcif Tissue Int 86(4):307–312CrossRefPubMedGoogle Scholar
  40. 40.
    Zhu C, Chen S, Chui CH, Tan BK, Liu Q (2016) Early detection and differentiation of venous and arterial occlusion in skin flaps using visible diffuse reflectance spectroscopy and autofluorescence spectroscopy. Biomed Opt Express 7(2):570–580CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    de Veld DC, Skurichina M, Witjes MJ, Duin RP, Sterenborg HJ, Roodenburg JL (2005) Autofluorescence and diffuse reflectance spectroscopy for oral oncology. Lasers Surg Med 36(5):356–364CrossRefPubMedGoogle Scholar
  42. 42.
    Amouroux M, Diaz-Ayil G, Blondel WC, Bourg-Heckly G, Leroux A, Guillemin F (2009) Classification of ultraviolet irradiated mouse skin histological stages by bimodal spectroscopy: multiple excitation autofluorescence and diffuse reflectance. J Biomed Opt 14(1):014011CrossRefPubMedGoogle Scholar
  43. 43.
    Shao X, Zheng W, Huang Z (2010) Polarized near-infrared autofluorescence imaging combined with near-infrared diffuse reflectance imaging for improving colonic cancer detection. Opt Express 18(23):24293–24300CrossRefPubMedGoogle Scholar
  44. 44.
    Palmer GM, Zhu C, Breslin TM, Xu F, Gilchrist KW, Ramanujam N (2003) Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003). IEEE Trans Biomed Eng 50(11):1233–1242CrossRefPubMedGoogle Scholar
  45. 45.
    Breslin TM, Xu F, Palmer GM, Zhu C, Gilchrist KW, Ramanujam N (2004) Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues. Ann Surg Oncol 11(1):65–70CrossRefPubMedGoogle Scholar
  46. 46.
    Bigio IJ, Bown SG, Briggs G, Kelley C, Lakhani S, Pickard D, Ripley PM, Rose IG, Saunders C (2000) Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results. J Biomed Opt 0001 5(2):221–228CrossRefGoogle Scholar
  47. 47.
    Mallia RJ, Narayanan S, Madhavan J, Sebastian P, Kumar R, Mathews A, Thomas G, Radhakrishnan J (2010) Diffuse reflection spectroscopy: an alternative to autofluorescence spectroscopy in tongue cancer detection. Appl Spectrosc 64(4):409–418CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • Florian Stelzle
    • 1
    • 2
  • Maximilian Rohde
    • 1
    • 2
  • Max Riemann
    • 1
  • Nicolai Oetter
    • 1
  • Werner Adler
    • 3
  • Katja Tangermann-Gerk
    • 4
  • Michael Schmidt
    • 2
    • 4
    • 5
  • Christian Knipfer
    • 2
    • 6
    Email author
  1. 1.Department of Oral and Maxillofacial SurgeryFriedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital ErlangenErlangenGermany
  2. 2.Graduate School in Advanced Optical Technologies (SAOT)Friedrich-Alexander-University Erlangen-Nürnberg (FAU)ErlangenGermany
  3. 3.Department of Medical Informatics, Biometry and EpidemiologyFriedrich-Alexander-University Erlangen-Nürnberg (FAU)ErlangenGermany
  4. 4.Bavarian Laser Center GmbH (blz)ErlangenGermany
  5. 5.Institute of Photonic TechnologiesFriedrich-Alexander-University Erlangen-Nürnberg(FAU)ErlangenGermany
  6. 6.Department of Oral and Maxillofacial SurgeryUniversity of Hamburg (UHH), University Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations