Lasers in Medical Science

, Volume 31, Issue 9, pp 1855–1862 | Cite as

Increase in the nitric oxide release without changes in cell viability of macrophages after laser therapy with 660 and 808 nm lasers

  • Igor Henrique Morais SilvaEmail author
  • Samantha Cardoso de Andrade
  • Andreza Barkokebas Santos de Faria
  • Deborah Daniela Diniz Fonsêca
  • Luiz Alcino Monteiro Gueiros
  • Alessandra Albuquerque Tavares Carvalho
  • Wylla Tatiana Ferreira da Silva
  • Raul Manhães de Castro
  • Jair Carneiro Leão
Original Article


The aim of this study was to evaluate the influence of low-level laser therapy (LLLT) with different parameters and wavelengths on nitric oxide (NO) release and cell viability. Irradiation was performed with Ga-Al-As laser, continuous mode and wavelengths of 660 and 808 nm at different energy and power densities. For each wavelength, powers of 30, 50, and 100 mW and times of 10, 30, and 60 s were used. NO release was measured using Griess reaction, and cell viability was evaluated by mitochondrial reduction of bromide 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) to formazan. LLLT promoted statistically significant changes in NO release and MTT value only at the wavelength of 660 nm (p < 0.05). LLLT also promoted an increase in the NO release and cell viability when the energy densities 64 (p = 0.04) and 214 J/cm2 (p = 0.012), respectively, were used. LLLT has a significant impact on NO release without affecting cell viability, but the significance of these findings in the inflammatory response needs to be further studied.


Inflammation Laser therapy Macrophages MTT Nitric oxide NO 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Moriyama Y, Nguyen J, Akens M et al (2009) In vivo effects of low level laser therapy on inducible nitric oxide synthase. Lasers Surg Med 41:227–231CrossRefPubMedGoogle Scholar
  2. 2.
    Pinheiro SL, Donegá LM, Seabra LMS et al (2010) Capacity of photodynamic therapy for microbial reduction in periodontal pockets. Lasers Med Sci 25:87–91CrossRefPubMedGoogle Scholar
  3. 3.
    Frozanfar A, Ramezani M, Rahpeyma A et al (2013) The effects of low level laser therapy on the expression of collagen type I gene and proliferation of human gingival fibroblasts (Hgf3-Pi 53): in vitro study. Iran J Basic Med Sci 16:1071–1074PubMedPubMedCentralGoogle Scholar
  4. 4.
    Almeida Lopes L, Rigau J, Zangaro RA et al (2001) Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29:179–184CrossRefPubMedGoogle Scholar
  5. 5.
    Kreisler M, Christoffers AB, Al-Haj H et al (2002) Low level 809 nm diode laser induced in vitro stimulation of the proliferation of human gingival fibroblasts. Lasers Surg Med 30:365–392CrossRefPubMedGoogle Scholar
  6. 6.
    Rocha AM Jr, Andrade LCF, Oliveira RG et al (2006) Modulação da proliferação fibroblástica e da resposta inflamatória pela terapia a laser de baixa intensidade no processo de reparo tecidual. An Bras Dermatol 81:150–156Google Scholar
  7. 7.
    Ribeiro MS, Da Silva Dde F, De Araujo CE et al (2004) Effects of low-intensity polarized visible laser radiation on skin burns: a light microscopy study. J Clin Laser Med Surg 22:59–66CrossRefPubMedGoogle Scholar
  8. 8.
    Hagiwara S, Iwasaka H, Hasegawa A et al (2010) Pre-irradiation of blood by gallium aluminum arsenide (830 nm) low-level laser enhances peripheral endogenous opioid analgesia in rats. Anesth Analg 107:1058–1063CrossRefGoogle Scholar
  9. 9.
    Mizutani K, Musya Y, Wakae K et al (2008) A clinical study on serum prostaglandin E2 with low-level laser therapy. Photomed Laser Surg 22:537–539CrossRefGoogle Scholar
  10. 10.
    Meneguzzo DT, Lopes LA, Pallota R et al (2013) Prevention and treatment of mice paw edema by near-infrared low-level laser therapy on lymph nodes. Lasers Med Sci 28:973–980CrossRefPubMedGoogle Scholar
  11. 11.
    Albertini R, Villa Verde AB, Aimbire F et al (2008) Cytokines mRNA expression is decreased in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation after low level laser therapy (LLLT). Photomed Laser Surg 26:19–24CrossRefPubMedGoogle Scholar
  12. 12.
    Lima FM, Villaverde AB, Albertini R et al (2011) Dual effect of low-level laser therapy (LLLT) on the acute lung inflammation induced by intestinal ischemia and reperfusion: action on anti- and pro-inflammatory cytokines. Lasers Surg Med 43:410–420CrossRefPubMedGoogle Scholar
  13. 13.
    Boschi ES, Leite CE, Saciura VC et al (2008) Anti-inflammatory effects of low-level laser therapy (660 nm) in the early phase in carrageenan-induced pleurisy in rat. Lasers Surg Med 40:500–508CrossRefPubMedGoogle Scholar
  14. 14.
    Lima FM, Vitoretti L, Coelho F et al (2013) Suppressive effect of low-level laser therapy on tracheal hyperresponsiveness and lung inflammation in rat subjected to intestinal ischemia and reperfusion. Lasers Med Sci 28:551–564CrossRefPubMedGoogle Scholar
  15. 15.
    Safavi SM, Kazemi B, Esmaeili M et al (2008) Effects of low-level He–Ne laser irradiation on the gene expression of IL-1b, TNF-a, IFNc, TGF-b, bFGF, and PDGF in rat’s gingival. Lasers Med Sci 3:331–335CrossRefGoogle Scholar
  16. 16.
    Lowenstein CJ, Padalko E (2014) iNOS (NOS2) at a glance. J Cell Sci 117:2865–2867CrossRefGoogle Scholar
  17. 17.
    Nathan C (2002) Nitric oxide as a secretory product of mammalian cells. FASEB J 6:3051–3064Google Scholar
  18. 18.
    Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Servetto N, Cremonezzi D, Simes JC et al (2010) Evaluation of inflammatory biomarkers associated with oxidative stress and histological assessment of low-level laser therapy in experimental myopathy. Lasers Surg Med 42:577–583CrossRefPubMedGoogle Scholar
  20. 20.
    Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916CrossRefPubMedGoogle Scholar
  21. 21.
    Lancaster JR (1992) Nitric oxide in cells. Am Sci 80:248–259Google Scholar
  22. 22.
    Tunér J, Hode L (2002) Laser therapy: clinical practice and scientific background. Prima Books, SwedenGoogle Scholar
  23. 23.
    Moriyama Y, Moriyarna EH, Blackmore K, Akens MK, Lilge L (2005) In vivo study of the inflammatory modulating effects of low-level laser therapy on iNOS expression using bioluminescence imaging. Photochem Photobiol 8:1351–1355CrossRefGoogle Scholar
  24. 24.
    Gavish L, Perez LS, Reissman P (2008) Irradiation with 780 nm diode laser attenuates inflammatory cytokines but upregulates nitric oxide in lipopolysaccharide-stimulated macrophages: implications for the prevention of aneurysm progression. Lasers Surg Med 40:371–378CrossRefPubMedGoogle Scholar
  25. 25.
    van Meerloo J, Kaspers GJ, Cloos J (2011) Cell sensitivity assays: the MTT assay. Methods Mol Biol 731:237–245CrossRefPubMedGoogle Scholar
  26. 26.
    Huang TH, Lu YC, Kao CT (2012) Low-level diode laser therapy reduces lipopolysaccharide (LPS)-induced bone cell inflammation. Lasers Med Sci 27:621–627CrossRefPubMedGoogle Scholar
  27. 27.
    Silva Garcez A, Simões Ribeiro M, Núñez SC (2012) Laser de baixa potência: princípios básicos e aplicações clínicas na Odontologia. Elsevier, Rio de JaneiroGoogle Scholar
  28. 28.
    Novoselova EG, Glushkova OV, Cherenkov DA et al (2006) Effects of low-power laser radiation on mice immunity. Photodermatol Photoimmunol Photomed 22:33–38CrossRefPubMedGoogle Scholar
  29. 29.
    Huang Y-Y, Chen ACH, Carrol JD et al (2009) Biphasic dose response in low level light therapy. Dose-Response 7:358–383CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Albertini R, Aimbire FSC, Correa FI et al (2004) Effects of different protocol doses of low power gallium-aluminum-arsenate (Ga-Al-As) laser radiation (650 nm) on carrageenan induced rat paw oedema. J Photochem Photobiol 74:101–107CrossRefGoogle Scholar
  31. 31.
    Karu T (2003) Low power laser therapy. In: Biomedics photonics handbook. CRC Press, Tennessee, Boca RatonGoogle Scholar
  32. 32.
    Kroncke KD, Fehsel K, Kolb-Bachofen V (1997) Nitric oxide: cytotoxicity versus cytoprotection—how, why, when, and where? Nitric Oxide 1:107–120CrossRefPubMedGoogle Scholar
  33. 33.
    Wilden L, Karthein R (1998) Import of phenomena of electrons and therapeutic low-level laser in regard to the mitochondrial energy transfer. J Clin Laser Med Surg 16:159–165PubMedGoogle Scholar
  34. 34.
    Wahl SM, McCartney-Francis N, Chan R, Dionne J et al (2003) Nitric oxide in experimental joint inflammation. Benefit or detriment? Cells Tissues Organs 174:26–33CrossRefPubMedGoogle Scholar
  35. 35.
    van Breugel HH, Bär PR (1992) Power and exposure time of He-Ne laser irradiation are more important than total energy dose in photo-biomodulation of human fibroblasts in vitro. Lasers Surg Med 12:528–537CrossRefPubMedGoogle Scholar
  36. 36.
    Azevedo LH, de Paula Eduardo F, Moreira MS et al (2006) Influence of different power densites of LILT on cultured human fibroblast growth: a pilot study. Laser Med Sci 21:86–89CrossRefGoogle Scholar
  37. 37.
    Raetz CR, Ulevitch RJ, Wright SD et al (1991) Gram-negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction. FASEB J 5:2652–2660PubMedGoogle Scholar
  38. 38.
    Wu CH, Chen TL, Chen TG et al (2003) Nitric oxide modulates pro- and anti-inflammatory cytokines in lipopolysaccharide-activated macrophages. J Trauma 55:540–545CrossRefPubMedGoogle Scholar
  39. 39.
    Sies H (2007) Biological redox systems and oxidative stress. Cell Mol Life Sci 64:2181–2188CrossRefPubMedGoogle Scholar
  40. 40.
    Dávila S, Vignola MB, Cremonezzi D et al (2011) Low level laser therapy on experimental myopathy. Laser Ther 20:287–292CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Aimbire F, Albertini R, Pacheco MT et al (2006) Low-level laser therapy induces dose-dependent reduction of TNFalpha levels in acute inflammation. Photomed Laser Surg 24:33–37CrossRefPubMedGoogle Scholar
  42. 42.
    Vladimirov, Y.A, A. N.; Klebanov, G. I. (2004) Photobiological principles of therapeutic applications of laser radiation. Review. Biochemistry. 69:81–90.Google Scholar
  43. 43.
    Gavish L, Perez L, Gertz SD (2006) Low-level laser irradiation modulates matrix metalloproteinase activity and gene expression in porcine aortic smooth muscle cells. Lasers Surg Med 38:779–786CrossRefPubMedGoogle Scholar
  44. 44.
    Schmidt A, Geigenmueller S, Voelker W et al (2003) Exogenous nitric oxide causes overexpression of TGFbeta1 and overproduction of extracellular matrix in human coronary smooth muscle cells. Cardiovasc Res 58:671–678CrossRefPubMedGoogle Scholar
  45. 45.
    Kuwabara M, Kakinuma Y, Ando M et al (2006) Nitric oxide stimulates vascular endothelial growth factor production in cardiomyocytes involved in angiogenesis. J Physiol Sci 56:95–101CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Igor Henrique Morais Silva
    • 1
    Email author
  • Samantha Cardoso de Andrade
    • 1
  • Andreza Barkokebas Santos de Faria
    • 1
  • Deborah Daniela Diniz Fonsêca
    • 1
  • Luiz Alcino Monteiro Gueiros
    • 1
  • Alessandra Albuquerque Tavares Carvalho
    • 1
  • Wylla Tatiana Ferreira da Silva
    • 2
  • Raul Manhães de Castro
    • 2
  • Jair Carneiro Leão
    • 1
  1. 1.Department of Clinic and Preventive DentistryPernambuco Federal UniversityRecifeBrazil
  2. 2.Department of NutritionPernambuco Federal UniversityRecifeBrazil

Personalised recommendations