Lasers in Medical Science

, Volume 31, Issue 7, pp 1493–1510 | Cite as

Effect of diode low-level lasers on fibroblasts derived from human periodontal tissue: a systematic review of in vitro studies

  • Chong Ren
  • Colman McGrath
  • Lijian Jin
  • Chengfei Zhang
  • Yanqi YangEmail author
Original Article


This study aimed to systematically assess the parameter-specific effects of the diode low-level laser on human gingival fibroblasts (HGFs) and human periodontal ligament fibroblasts (HPDLFs). An extensive search was performed in major electronic databases including PubMed (1997), EMBASE (1947) and Web of Science (1956) and supplemented by hand search of reference lists and relevant laser journals for cell culture studies investigating the effect of diode low-level lasers on HGFs and HPDLFs published from January 1995 to December 2015. A total of 21 studies were included after screening 324 independent records, amongst which eight targeted HPDLFs and 13 focussed on HGFs. The diode low-level laser showed positive effects on promoting fibroblast proliferation and osteogenic differentiation and modulating cellular inflammation via changes in gene expression and the release of growth factors, bone-remodelling markers or inflammatory mediators in a parameter-dependent manner. Repeated irradiations with wavelengths in the red and near-infrared range and at an energy density below 16 J/cm2 elicited favourable responses. However, considerable variations and weaknesses in the study designs and laser protocols limited the interstudy comparison and clinical transition. Current evidence showed that diode low-level lasers with adequate parameters stimulated the proliferation and modulated the inflammation of fibroblasts derived from human periodontal tissue. However, further in vitro studies with better designs and more appropriate study models and laser parameters are anticipated to provide sound evidence for clinical studies and practice.


Low-level laser Diode laser Human gingival fibroblasts Human periodontal ligament fibroblasts Systematic review 



This research was supported by Health and Medical Research Fund of Hong Kong (01121056).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Sun G, Tunér J (2004) Low-level laser therapy in dentistry. Dent Clin N Am 48:1061–1076. doi: 10.1016/j.cden.2004.05.004 CrossRefPubMedGoogle Scholar
  2. 2.
    de Paula EC, de Freitas PM, Esteves-Oliveira M et al (2010) Laser phototherapy in the treatment of periodontal disease. A review. Lasers Med Sci 25:781–792. doi: 10.1007/s10103-010-0812-y CrossRefGoogle Scholar
  3. 3.
    Ge MK, He WL, Chen J et al (2015) Efficacy of low-level laser therapy for accelerating tooth movement during orthodontic treatment: a systematic review and meta-analysis. Lasers Med Sci 30:1609–1618. doi: 10.1007/s10103-014-1538-z CrossRefPubMedGoogle Scholar
  4. 4.
    Ren C, McGrath C, Yang Y (2015) The effectiveness of low-level diode laser therapy on orthodontic pain management: a systematic review and meta-analysis. Lasers Med Sci 30:1881–1893. doi: 10.1007/s10103-015-1743-4 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tuner J, Hode L (2007) The laser therapy handbook: a guide for research scientists, doctors, dentists, veterinarians and other interested parties within the medical field. Prima Books, GrangesbergGoogle Scholar
  6. 6.
    Houreld NN, Abrahamse H (2008) Laser light influences cellular viability and proliferation in diabetic-wounded fibroblast cells in a dose-and wavelength-dependent manner. Lasers Med Sci 23:11–18CrossRefPubMedGoogle Scholar
  7. 7.
    Pinheiro AL, Gerbi ME (2006) Photoengineering of bone repair processes. Photomed Laser Surg 24:169–178CrossRefPubMedGoogle Scholar
  8. 8.
    Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose–response 7:358–383. doi: 10.2203/dose-response.09-027.Hamblin PubMedPubMedCentralGoogle Scholar
  9. 9.
    Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 31:334–340CrossRefPubMedGoogle Scholar
  10. 10.
    Bjordal JM, Johnson MI, Iversen V, Aimbire F, Lopes-Martins RA (2006) Low-level laser therapy in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed Laser Surg 24:158–168CrossRefPubMedGoogle Scholar
  11. 11.
    Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16:1–16. doi: 10.1186/1423-0127-16-4 CrossRefGoogle Scholar
  12. 12.
    Weinreb M, Nemcovsky CE (2015) In vitro models for evaluation of periodontal wound healing/regeneration. Periodontol 2000 68:41–54. doi: 10.1111/prd.12079 CrossRefPubMedGoogle Scholar
  13. 13.
    Giannopoulou C, Cimasoni G (1996) Functional characteristics of gingival and periodontal ligament fibroblasts. J Dent Res 75:895–902CrossRefPubMedGoogle Scholar
  14. 14.
    Beertsen W, McCulloch CA, Sodek J (1997) The periodontal ligament: a unique, multifunctional connective tissue. Periodontol 2000 13:20–40CrossRefPubMedGoogle Scholar
  15. 15.
    Peplow PV, Chung TY, Baxter GD (2010) Laser photobiomodulation of proliferation of cells in culture: a review of human and animal studies. Photomed Laser Surg 28(S1):S3–S40. doi: 10.1089/pho.2010.2771 CrossRefPubMedGoogle Scholar
  16. 16.
    Peplow PV, Chung TY, Ryan B, Baxter GD (2011) Laser photobiomodulation of gene expression and release of growth factors and cytokines from cells in culture: a review of human and animal studies. Photomed Laser Surg 29:285–304. doi: 10.1089/pho.2010.2846 CrossRefPubMedGoogle Scholar
  17. 17.
    Choi EJ, Yim JY, Koo KT et al (2010) Biological effects of a semiconductor diode laser on human periodontal ligament fibroblasts. J Periodontal Implant Sci 40:105–110. doi: 10.5051/jpis.2010.40.3.105 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kreisler M, Christoffers AB, Willershausen B, d’Hoedt B (2003) Effect of low‐level GaAlAs laser irradiation on the proliferation rate of human periodontal ligament fibroblasts: an in vitro study. J Clin Periodontol 30:353–358CrossRefPubMedGoogle Scholar
  19. 19.
    Wu JY, Chen CH, Yeh LY, Yeh ML, Ting CC, Wang YH (2013) Low-power laser irradiation promotes the proliferation and osteogenic differentiation of human periodontal ligament cells via cyclic adenosine monophosphate. Int J Oral Sci 5:85–91. doi: 10.1038/ijos.2013.38 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mayahara K, Yamaguchi A, Sakaguchi M, Igarashi Y, Shimizu N (2010) Effect of Ga‐Al‐As laser irradiation on COX‐2 and cPLA2‐α and cPLA2 radiation on COX2010) effect of gas the proliferat. Lasers Surg Med 42:489–493. doi: 10.1002/lsm.20871 CrossRefPubMedGoogle Scholar
  21. 21.
    Huang TH, Liu SL, Chen CL, Shie MY, Kao CT (2013) Low-level laser effects on simulated orthodontic tension side periodontal ligament cells. Photomed Laser Surg 31:72–77. doi: 10.1089/pho.2012.3359 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ozawa Y, Shimizu N, Abiko Y (1997) Low‐energy diode laser irradiation reduced plasminogen activator activity in human periodontal ligament cells. Lasers Surg Med 21:456–463CrossRefPubMedGoogle Scholar
  23. 23.
    Shimizu N, Yamaguchi M, Goseki T, Shibata Y, Takiguchi H, Iwasawa T, Abiko Y (1995) Inhibition of prostaglandin E2 and interleukin 1-β production by low-power laser irradiation in stretched human periodontal ligament cells. J Dent Res 74:1382–1388CrossRefPubMedGoogle Scholar
  24. 24.
    Huang TH, Chen CC, Liu SL, Lu YC, Kao CT (2014) A low-level diode laser therapy reduces the lipopolysaccharide (LPS)-induced periodontal ligament cell inflammation. Laser Phys Lett. doi: 10.1088/1612-2011/11/7/075602 Google Scholar
  25. 25.
    Almeida-Lopes L, Rigau J, Zângaro RA, Guidugli-Neto J, Jaeger MM (2001) Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29:179–184CrossRefPubMedGoogle Scholar
  26. 26.
    Marques MM, Pereira AN, Fujihara NA, Nogueira FN, Eduardo CP (2004) Effect of low-power laser irradiation on protein synthesis and ultrastructure of human gingival fibroblasts. Lasers Surg Med 34:260–265CrossRefPubMedGoogle Scholar
  27. 27.
    Damante CA, De Micheli G, Miyagi SPH, Feist IS, Marques MM (2009) Effect of laser phototherapy on the release of fibroblast growth factors by human gingival fibroblasts. Lasers Med Sci 24:885–891. doi: 10.1007/s10103-008-0582-y CrossRefPubMedGoogle Scholar
  28. 28.
    Hakki SS, Bozkurt SB (2012) Effects of different setting of diode laser on the mRNA expression of growth factors and type I collagen of human gingival fibroblasts. Lasers Med Sci 27:325–331. doi: 10.1007/s10103-010-0879-5 CrossRefPubMedGoogle Scholar
  29. 29.
    Basso FG, Pansani TN, Turrioni APS, Bagnato VS, Hebling J, de Souza Costa CA (2012) In vitro wound healing improvement by low-level laser therapy application in cultured gingival fibroblasts. Int J Dent. doi: 10.1155/2012/719452 PubMedPubMedCentralGoogle Scholar
  30. 30.
    Azevedo LH, de Paula EF, Moreira MS, de Paula EC, Marques MM (2006) Influence of different power densities of LILT on cultured human fibroblast growth. Lasers Med Sci 21:86–89CrossRefPubMedGoogle Scholar
  31. 31.
    Frozanfar A, Ramezani M, Rahpeyma A, Khajehahmadi S, Arbab HR (2013) The effects of low level laser therapy on the expression of collagen type I gene and proliferation of human gingival fibroblasts (Hgf3-Pi 53): in vitro study. Iran J Basic Med Sci 16:1071–1074PubMedPubMedCentralGoogle Scholar
  32. 32.
    Saygun I, Karacay S, Serdar M, Ural AU, Sencimen M, Kurtis B (2008) Effects of laser irradiation on the release of basic fibroblast growth factor (bFGF), insulin like growth factor-1 (IGF-1), and receptor of IGF-1 (IGFBP3) from gingival fibroblasts. Lasers Med Sci 23:211–215CrossRefPubMedGoogle Scholar
  33. 33.
    Kreisler M, Christoffers AB, Al-Haj H, Willershausen B, d’Hoedt B (2002) Low level 809-nm diode laser-induced in vitro stimulation of the proliferation of human gingival fibroblasts. Lasers Surg Med 30:365–369CrossRefPubMedGoogle Scholar
  34. 34.
    Nomura K, Yamaguchi M, Abiko Y (2001) Inhibition of interleukin-1β production and gene expression in human gingival fibroblasts by low-energy laser irradiation. Lasers Med Sci 16:218–223CrossRefPubMedGoogle Scholar
  35. 35.
    Sakurai Y, Yamaguchi M, Abiko Y (2000) Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts. Eur J Oral Sci 108:29–34CrossRefPubMedGoogle Scholar
  36. 36.
    Takema T, Yamaguchi M, Abiko Y (2000) Reduction of plasminogen activator activity stimulated by lipopolysaccharide from periodontal pathogen in human gingival fibroblasts by low-energy laser irradiation. Lasers Med Sci 15:35–42. doi: 10.1007/s101030050045 CrossRefPubMedGoogle Scholar
  37. 37.
    Basso FG, Pansani TN, Soares DG, Scheffel DL, Bagnato VS, de Souza Costa CA, Hebling J (2015) Biomodulation of inflammatory cytokines related to oral mucositis by low-level laser therapy. Photochem Photobiol 91:952–956. doi: 10.1111/php.12445 CrossRefPubMedGoogle Scholar
  38. 38.
    Brade H (1999) Endotoxin in health and disease. Marcel Dekker, New YorkGoogle Scholar
  39. 39.
    Erac Y, Selli C, Filik P, Tosun M (2014) Effects of passage number on proliferation and store-operated calcium entry in A7r5 vascular smooth muscle cells. J Pharmacol Toxicol Methods 70:1–5. doi: 10.1016/j.vascn.2014.03.001 CrossRefPubMedGoogle Scholar
  40. 40.
    Hughes P, Marshall D, Reid Y, Parkes H, Gelber C (2007) The costs of using unauthenticated, over-passaged cell lines: how much more data do we need? Biotechniques 43:575–586. doi: 10.2144/000112598 CrossRefPubMedGoogle Scholar
  41. 41.
    Pirkmajer S, Chibalin AV (2011) Serum starvation: caveat emptor. Am J Physiol Cell Physiol 301:C272–C279. doi: 10.1152/ajpcell.00091.2011 CrossRefPubMedGoogle Scholar
  42. 42.
    Tran Hle B, Doan VN, Le HT, Ngo LT (2014) Various methods for isolation of multipotent human periodontal ligament cells for regenerative medicine. In Vitro Cell Dev Biol Anim 50:597–602. doi: 10.1007/s11626-014-9748-z CrossRefPubMedGoogle Scholar
  43. 43.
    Yang L, Yang Y, Wang S, Li Y, Zhao Z (2015) In vitro mechanical loading models for periodontal ligament cells: from two-dimensional to three-dimensional models. Arch Oral Biol 60:416–424. doi: 10.1016/j.archoralbio.2014.11.012 CrossRefPubMedGoogle Scholar
  44. 44.
    Kapoor P, Kharbanda OP, Monga N, Miglani R, Kapila S (2014) Effect of orthodontic forces on cytokine and receptor levels in gingival crevicular fluid: a systematic review. Prog Orthod 15:65. doi: 10.1186/s40510-014-0065-6 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Calderín S, García-Núñez JA, Gómez C (2013) Short-term clinical and osteoimmunological effects of scaling and root planing complemented by simple or repeated laser phototherapy in chronic periodontitis. Lasers Med Sci 28:157–166. doi: 10.1007/s10103-012-1104-5 CrossRefPubMedGoogle Scholar
  46. 46.
    Qadri T, Miranda L, Tunér J, Gustafsson A (2005) The short-term effects of low-level lasers as adjunct therapy in the treatment of periodontal inflammation. J Clin Periodontol 32:714–719CrossRefPubMedGoogle Scholar
  47. 47.
    Bicakci AA, Kocoglu-Altan B, Toker H, Mutaf I, Sumer Z (2012) Efficiency of low-level laser therapy in reducing pain induced by orthodontic forces. Photomed Laser Surg 30:460–465. doi: 10.1089/pho.2012.3245 CrossRefPubMedGoogle Scholar
  48. 48.
    Safavi SM, Kazemi B, Esmaeili M, Fallah A, Modarresi A, Mir M (2008) Effects of low-level He-Ne laser irradiation on the gene expression of IL-1beta, TNF-alpha, IFN-gamma, TGF-beta, bFGF, and PDGF in rat’s gingiva. Lasers Med Sci 23:331–335CrossRefPubMedGoogle Scholar
  49. 49.
    Yoshida T, Yamaguchi M, Utsunomiya T et al (2009) Low-energy laser irradiation accelerates the velocity of tooth movement via stimulation of the alveolar bone remodeling. Orthod Craniofacial Res 12:289–298. doi: 10.1111/j.1601-6343.2009.01464.x CrossRefGoogle Scholar
  50. 50.
    Kawasaki K, Shimizu N (2000) Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med 26:282–291CrossRefPubMedGoogle Scholar
  51. 51.
    Wu JY, Chen CH, Wang CZ, Ho ML, Yeh ML, Wang YH (2013) Low-power laser irradiation suppresses inflammatory response of human adipose-derived stem cells by modulating intracellular cyclic AMP level and NF-kB activity. PLoS One 8, e54067. doi: 10.1371/journal.pone.0054067 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Häkkinen L, Uitto VJ, Larjava H (2000) Cell biology of gingival wound healing. Periodontol 2000 24:127–152CrossRefPubMedGoogle Scholar
  53. 53.
    Huang H, Williams RC, Kyrkanides S (2014) Accelerated orthodontic tooth movement: molecular mechanisms. Am J Orthod Dentofac Orthop 146:620–632. doi: 10.1016/j.ajodo.2014.07.007 CrossRefGoogle Scholar
  54. 54.
    Yamamoto T, Kita M, Oseko F, Nakamura T, Imanishi J, Kanamura N (2006) Cytokine production in human periodontal ligament cells stimulated with Porphyromonas gingivalis. J Periodontal Res 41:554–559CrossRefPubMedGoogle Scholar
  55. 55.
    Kasai K, Chou MY, Yamaguchi M (2015) Molecular effects of low-energy laser irradiation during orthodontic tooth movement. Semin Orthod 21:203–209CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Chong Ren
    • 1
  • Colman McGrath
    • 1
  • Lijian Jin
    • 1
  • Chengfei Zhang
    • 1
  • Yanqi Yang
    • 1
    Email author
  1. 1.Faculty of Dentistrythe University of Hong KongHong Kong SARChina

Personalised recommendations