Skip to main content
Log in

What is the best moment to apply phototherapy when associated to a strength training program? A randomized, double-blinded, placebo-controlled trial

Phototherapy in association to strength training

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

An Erratum to this article was published on 06 December 2016

Abstract

The effects of phototherapy (or photobiomodulation therapy) with low-level laser therapy (LLLT) and/or light-emitting diodes (LEDs) on human performance improvement have been widely studied. Few studies have examined its effect on muscular training and no studies have explored the necessary moment of phototherapy irradiations (i.e., before and/or after training sessions). The aim of this study was to determine the optimal moment to apply phototherapy irradiation when used in association with strength training. Forty-eight male volunteers (age between 18 to 35 years old) completed all procedures in this study. Volunteers performed the strength training protocol where either a phototherapy and/or placebo before and/or after each training session was performed using cluster probes with four laser diodes of 905 nm, four LEDs of 875 nm, and four LEDs of 640 nm—manufactured by Multi Radiance Medical™. The training protocol duration was 12 weeks with assessments of peak torque reached in maximum voluntary contraction test (MVC), load in 1-repetition maximum test (1-RM) and thigh circumference (perimetry) at larger cross-sectional area (CSA) at baseline, 4 weeks, 8 weeks, and 12 weeks. Volunteers from group treated with phototherapy before and placebo after training sessions showed significant (p < 0.05) changes in MVC and 1-RM tests for both exercises (leg extension and leg press) when compared to other groups. With an apparent lack of side effects and safety due to no thermal damage to the tissue, we conclude that the application of phototherapy yields enhanced strength gains when it is applied before exercise. The application may have additional beneficial value in post-injury rehabilitation where strength improvements are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Benson AC, Torode ME, Fiatarone Singh MA (2008) Effects of resistance training on metabolic fitness in children and adolescents: a systematic review. Obes Rev 9:43–66

    Article  CAS  PubMed  Google Scholar 

  2. Hovanec N, Sawant A, Overend TJ, Petrella RJ, Vandervoort AA (2012) Resistance training and older adults with type 2 diabetes mellitus: strength of the evidence. J Aging Res 2012:284635

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mota MR, Oliveira RJ, Terra DF, Pardono E, Dutra MT, de Almeida JA, Silva FM (2013) Acute and chronic effects of resistance exercise on blood pressure in elderly women and the possible influence of ACE I/D polymorphism. Int J Gen Med 6:581–587

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Nagamatsu LS, Handy TC, Hsu CL, Voss M, Liu-Ambrose T (2012) Resistance training promotes cognitive and functional brain plasticity in seniors with probable mild cognitive impairment. Arch Intern Med 172:666–668

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rosendahl E, Gustafson Y, Nordin E, Lundin-Olsson L, Nyberg L (2008) A randomized controlled trial of fall prevention by a high-intensity functional exercise program for older people living in residential care facilities. Aging Clin Exp Res 20:67–75

    Article  PubMed  Google Scholar 

  6. Murton AJ, Greenhaff PL (2013) Resistance exercise and the mechanisms of muscle mass regulation in humans: acute effects on muscle protein turnover and the gaps in our understanding of chronic resistance exercise training adaptation. Int J Biochem Cell Biol 45:2209–2214

    Article  CAS  PubMed  Google Scholar 

  7. Hakkinen K, Alen M, Kraemer WJ, Gorostiaga E, Izquierdo M, Rusko H, Mikkola J, Hakkinen A, Valkeinen H, Kaarakainen E, Romu S, Erola V, Ahtiainen J, Paavolainen L (2003) Neuromuscular adaptations during concurrent strength and endurance training versus strength training. Eur J Appl Physiol 89:42–52

    Article  CAS  PubMed  Google Scholar 

  8. Moritani T, deVries HA (1979) Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 58:115–130

    CAS  PubMed  Google Scholar 

  9. Seynnes OR, de Boer M, Narici MV (2007) Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol 102:368–373

    Article  CAS  PubMed  Google Scholar 

  10. Baird MF, Graham SM, Baker JS, Bickerstaff GF (2012) Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J Nutr Metab 2012:960363

    Article  PubMed  PubMed Central  Google Scholar 

  11. Peake J, Nosaka K, Suzuki K (2005) Characterization of inflammatory responses to eccentric exercise in humans. Exerc Immunol Rev 11:64–85

    PubMed  Google Scholar 

  12. Yamin C, Duarte JA, Oliveira JM, Amir O, Sagiv M, Eynon N, Sagiv M, Amir RE (2008) IL6 (-174) and TNFA (-308) promoter polymorphisms are associated with systemic creatine kinase response to eccentric exercise. Eur J Appl Physiol 104:579–586

    Article  PubMed  Google Scholar 

  13. American College of Sports M (2009) American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 41:687–708

    Article  Google Scholar 

  14. Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, Ragg KE, Ratamess NA, Kraemer WJ, Staron RS (2002) Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol 88:50–60

    Article  PubMed  Google Scholar 

  15. McBride JM, Blaak JB, Triplett-McBride T (2003) Effect of resistance exercise volume and complexity on EMG, strength, and regional body composition. Eur J Appl Physiol 90:626–632

    Article  PubMed  Google Scholar 

  16. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40:516–533

    Article  PubMed  Google Scholar 

  17. Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose Response 7:358–383

    Article  PubMed  PubMed Central  Google Scholar 

  18. Antonialli FC, de Marchi T, Tomazoni SS, Vanin AA, dos Santos Grandinetti V, de Paiva PR, Pinto HD, Miranda EF, de Tarso C, de Carvalho P, Leal-Junior EC (2014) Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers Med Sci 29:1967–1976

    Article  PubMed  Google Scholar 

  19. Ferraresi C, de Brito OT, de Oliveira ZL, de Menezes Reiff RB, Baldissera V, de Andrade Perez SE, Matheucci Junior E, Parizotto NA (2011) Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci 26:349–358

    Article  PubMed  Google Scholar 

  20. Leal Junior EC, Lopes-Martins RA, Dalan F, Ferrari M, Sbabo FM, Generosi RA, Baroni BM, Penna SC, Iversen VV, Bjordal JM (2008) Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg 26:419–424

    Article  PubMed  Google Scholar 

  21. Leal Junior EC, Lopes-Martins RA, Vanin AA, Baroni BM, Grosselli D, De Marchi T, Iversen VV, Bjordal JM (2009) Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci 24:425–431

    Article  PubMed  Google Scholar 

  22. Paolillo FR, Corazza AV, Borghi-Silva A, Parizotto NA, Kurachi C, Bagnato VS (2013) Infrared LED irradiation applied during high-intensity treadmill training improves maximal exercise tolerance in postmenopausal women: a 6-month longitudinal study. Lasers Med Sci 28:415–422

    Article  PubMed  Google Scholar 

  23. Toma RL, Tucci HT, Antunes HK, Pedroni CR, de Oliveira AS, Buck I, Ferreira PD, Vassao PG, Renno AC (2013) Effect of 808 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in elderly women. Lasers Med Sci 28:1375–1382

    Article  PubMed  Google Scholar 

  24. Vieira WH, Ferraresi C, Perez SE, Baldissera V, Parizotto NA (2012) Effects of low-level laser therapy (808 nm) on isokinetic muscle performance of young women submitted to endurance training: a randomized controlled clinical trial. Lasers Med Sci 27:497–504

    Article  PubMed  Google Scholar 

  25. Borsa PA, Larkin KA, True JM (2013) Does phototherapy enhance skeletal muscle contractile function and postexercise recovery? A systematic review. J Athl Train 48:57–67

    PubMed  PubMed Central  Google Scholar 

  26. Leal-Junior EC, Vanin AA, Miranda EF, de Carvalho PT, Dal Corso S, Bjordal JM (2015) Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci 30:925–939

    Article  PubMed  Google Scholar 

  27. Folland JP, Williams AG (2007) The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med 37:145–168

    Article  PubMed  Google Scholar 

  28. Kadi F, Charifi N, Denis C, Lexell J, Andersen JL, Schjerling P, Olsen S, Kjaer M (2005) The behaviour of satellite cells in response to exercise: what have we learned from human studies? Pflugers Arch 451:319–327

    Article  CAS  PubMed  Google Scholar 

  29. Leal-Junior EC (2015) Photobiomodulation therapy in skeletal muscle: from exercise performance to muscular dystrophies. Photomed Laser Surg 33:53–54

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ziemann E, Zembron-Lacny A, Kasperska A, Antosiewicz J, Grzywacz T, Garsztka T, Laskowski R (2013) Exercise training-induced changes in inflammatory mediators and heat shock proteins in young tennis players. J Sports Sci Med 12:282–289

    PubMed  PubMed Central  Google Scholar 

  31. Mackey AL (2013) Does an NSAID a day keep satellite cells at bay? J Appl Physiol (1985) 115:900–908

    Article  CAS  Google Scholar 

  32. Takagi R, Fujita N, Arakawa T, Kawada S, Ishii N, Miki A (2011) Influence of icing on muscle regeneration after crush injury to skeletal muscles in rats. J Appl Physiol 110:382–388

    Article  PubMed  Google Scholar 

  33. Grandinetti Vdos S, Miranda EF, Johnson DS, de Paiva PR, Tomazoni SS, Vanin AA, Albuquerque-Pontes GM, Frigo L, Marcos RL, de Carvalho PT, Leal-Junior EC (2015) The thermal impact of phototherapy with concurrent super-pulsed lasers and red and infrared LEDs on human skin. Lasers Med Sci 30:1575–1581

    Article  PubMed  Google Scholar 

  34. Irving BA, Rutkowski J, Brock DW, Davis CK, Barrett EJ, Gaesser GA, Weltman A (2006) Comparison of Borg- and OMNI-RPE as markers of the blood lactate response to exercise. Med Sci Sports Exerc 38:1348–1352

    Article  CAS  PubMed  Google Scholar 

  35. Abe T, Kojima K, Kearns CF, Yohena H, Fukuda J (2003) Whole body muscle hypertrophy from resistance training: distribution and total mass. Br J Sports Med 37:543–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Hakkinen K (2003) Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol 89:555–563

    Article  CAS  PubMed  Google Scholar 

  37. Wernbom M, Augustsson J, Thomee R (2007) The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med 37:225–264

    Article  PubMed  Google Scholar 

  38. Baroni BM, Rodrigues R, Franke RA, Geremia JM, Rassier DE, Vaz MA (2013) Time course of neuromuscular adaptations to knee extensor eccentric training. Int J Sports Med 34:904–911

    Article  CAS  PubMed  Google Scholar 

  39. Bellamy LM, Joanisse S, Grubb A, Mitchell CJ, McKay BR, Phillips SM, Baker S, Parise G (2014) The acute satellite cell response and skeletal muscle hypertrophy following resistance training. PLoS One 9:e109739

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shepstone TN, Tang JE, Dallaire S, Schuenke MD, Staron RS, Phillips SM (2005) Short-term high- vs. low-velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men. J Appl Physiol 98:1768–1776

    Article  PubMed  Google Scholar 

  41. Baroni BM, Rodrigues R, Freire BB, Franke Rde A, Geremia JM, Vaz MA (2015) Effect of low-level laser therapy on muscle adaptation to knee extensor eccentric training. Eur J Appl Physiol 115:639–647

    Article  CAS  PubMed  Google Scholar 

  42. Albuquerque-Pontes GM, Vieira Rde P, Tomazoni SS, Caires CO, Nemeth V, Vanin AA, Santos LA, Pinto HD, Marcos RL, Bjordal JM, de Carvalho PT, Leal-Junior EC (2015) Effect of pre-irradiation with different doses, wavelengths, and application intervals of low-level laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats. Lasers Med Sci 30:59–66

    Article  PubMed  Google Scholar 

  43. Hayworth CR, Rojas JC, Padilla E, Holmes GM, Sheridan EC, Gonzalez-Lima F (2010) In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle. Photochem Photobiol 86:673–680

    Article  CAS  PubMed  Google Scholar 

  44. Miranda EF, Vanin AA, Tomazoni SS, Grandinetti Vdos S, de Paiva PR, Machado Cdos S, Monteiro KK, Casalechi HL, de Tarso P, de Carvalho C, Leal-Junior EC (2016) Using pre-exercise photobiomodulation therapy combining super-pulsed lasers and light-emitting diodes to improve performance in progressive cardiopulmonary exercise tests. J Athl Train 51:129–135

    Article  PubMed  Google Scholar 

  45. Pinto HD, Vanin AA, Miranda EF, Tomazoni SS, Johnson DS, Albuquerque-Pontes GM, Aleixo Junior IO, Grandinetti VD, Casalechi HL, de Carvalho PT, Leal-Junior EC (2016) Photobiomodulation therapy (PBMT) improves performance and accelerates recovery of high-level Rugby players in field test: a randomized, crossover, double-blind, placebo-controlled clinical study. J Strength Cond Res. [Epub ahead of print]

  46. Kwon HJ, Ha YC, Park HM (2015) The reference value of skeletal muscle mass index for defining the sarcopenia of women in Korea. J Bone Metab 22:71–75

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Cesar Pinto Leal-Junior.

Ethics declarations

All procedures were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in study.

Conflict of interests

Professor Ernesto Cesar Pinto Leal-Junior receives research support from Multi Radiance Medical (Solon, OH, USA), a laser device manufacturer. The remaining authors declare that they have no conflict of interests.

Disclosure of funding received for this work

Adriane Aver Vanin received PhD scholarship from São Paulo Research Foundation (FAPESP) (grant number 2013/19355-3). Caroline Santos Monteiro Machado received undergraduate scholarship from São Paulo Research Foundation (FAPESP) (grant number 2013/25814-0). Professor Ernesto Cesar Pinto Leal-Junior would like to thank São Paulo Research Foundation—FAPESP (grant number 2010/52404-0) and Brazilian Council of Science and Technology Development—CNPq (grant numbers 472062/2013-1 and 307717/2014-3).

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10103-016-2121-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanin, A.A., Miranda, E.F., Machado, C.S.M. et al. What is the best moment to apply phototherapy when associated to a strength training program? A randomized, double-blinded, placebo-controlled trial. Lasers Med Sci 31, 1555–1564 (2016). https://doi.org/10.1007/s10103-016-2015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-2015-7

Keywords

Navigation