Lasers in Medical Science

, Volume 31, Issue 7, pp 1447–1454 | Cite as

Online fast Biospeckle monitoring of drug action in Trypanosoma cruzi parasites by motion history image

  • Mohammad Zaheer AnsariEmail author
  • Hilda C. Grassi
  • Humberto CabreraEmail author
  • Ana Velásquez
  • Efrén D. J. Andrades
Original Article


This paper reports on the application of the motion history image (MHI) method on dynamic laser speckle processing as a result of a specific drug action on Trypanosoma cruzi parasites. The MHI procedure is based on human action recognition, and unlike other methods which use a sequence consisting of several frames for recognition, this method uses only an MHI per action sequence for recognition. MHI method avoids the complexity as well as the large computation in sequence matching-based methods and detects a change in the speckle pattern. Experimental results of MHI on real-time monitoring of activity (motility) under the influence of the drug demonstrate the effectiveness of the proposed method. The MHI showed an online result without loss of resolution and definition if we compare with routine LASCA method. The obtained results highlight the advantage of the MHI analysis over traditional qualitative image intensity-based methods and demonstrate the potential of measuring the activity of parasites via dynamic laser speckle analysis. The data was further numerically analyzed in the time domain, and the results presented the ability of the technique to monitor the action of the drug, particularly Epirubicin (100 μg/ml).


Dynamic speckle MHI Parasites Epirubicin 



The authors sincerely thank to Prof. Roberto A. Braga (Universidade Federal de Lavras, Brasil) for his helpful and fruitful discussions.


  1. 1.
    Arizaga R et al (1999) Speckle time evolution characterization by the co-occurence matrix analysis. Opt Laser Technol 31(2):163–169CrossRefGoogle Scholar
  2. 2.
    Waterman-Storer CM, Desai A, Bulinski JC, Salmon ED (1998) Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr Biol 8:1227–1230CrossRefPubMedGoogle Scholar
  3. 3.
    Aizu Y, Asakura T (1991) Biospeckle phenomena and their application to the evaluation of blood flow. Opt Laser Technol 23:205–219CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Arizaga R, Cap N, Rabal HJ, Trivi M (2002) Display of the local activity using dynamical speckle patterns. Opt Eng 41:287–294CrossRefGoogle Scholar
  6. 6.
    Pomarico JA, DiRocco HO (2004) Compact device for assessement of microorganism motility. Rev Sci Instrum 75:4727–4731CrossRefGoogle Scholar
  7. 7.
    Fernández M, Mavilio-Núñez A, Rabal HJ, Trivi M (2002) Wavelet transform analysis of dynamic speckle patterns texture. App Opt 41:6745–6750CrossRefGoogle Scholar
  8. 8.
    Briers JD, Webster S (1996) Quasi-real time digital version of flow monitoring using laser speckle contrast analysis (LASCA). J Biomed Opt 2:174–179CrossRefGoogle Scholar
  9. 9.
    Federico A, Kaufmann GH (2006) Evaluation of dynamic speckle activity using mode decomposition method. Opt Commun 267:287–294CrossRefGoogle Scholar
  10. 10.
    Ansari MZ, Nirala (2015) Biospeckle assessment of torn plant leaf tissue and automated computation of leaf vein density (LVD). Eur Phys J Appl Phys 70:21201CrossRefGoogle Scholar
  11. 11.
    Marti-Lopez L, Cabrera H, Martinez-Celorio RA, Gonzalez-Pena R (2010) Temporal difference method for processing dynamic speckle patterns. Opt Commun 283:4972–4977CrossRefGoogle Scholar
  12. 12.
    Minz PD, Nirala AK (2014) Intensity based algorithms for Biospeckle analysis. Optik 125:3633–3636CrossRefGoogle Scholar
  13. 13.
    Godinho RP, Silva MM, Nozela JR, Braga RA (2012) Online Biospeckle assessment without loss of definition and resolution by Motion History Image. Opt Lasers Eng 50(3):366–372CrossRefGoogle Scholar
  14. 14.
    Schmidt S, Widman MT, Worden RM (1997) A laser-diffraction capillary assay to measure random motility in bacteria. Biotechnol Tech 11:423–426CrossRefGoogle Scholar
  15. 15.
    Tan W, Oldenburg AL, Norman JJ, Desai TA, Boppart SA (2006) Optical coherence tomography of cell dynamics in three dimensional tissue models. Opt Express 14:7159–7171CrossRefPubMedGoogle Scholar
  16. 16.
    Rivera G, García B, Pichardo O, Torres N, Monge BA (2009) New therapeutic target for drug design against Trypanosoma cruzi; advances and perspectives. Curr Med Chem 16(25):3286–3293CrossRefPubMedGoogle Scholar
  17. 17.
    Zuma AA, Cavalcanti DP, Maia MCP, De Souza MCPW, Motta MCM (2011) Effect of topoisomerase inhibitors and DNA-binding drugs on the cell proliferation and ultrastructure of Trypanosoma cruzi. Int J Ant Ag 37:449–456CrossRefGoogle Scholar
  18. 18.
    Jobe M, Anwuzia-Iwegbu C, Banful A, Bosier E, Iqbal M, Jones K, Lecutier SJ, Lepper K, Redmond M, Ross-Parker A, Ward E, Wernham P, Whidden EM, Tyler KM, Steverding D (2012) Differential in vitro activity of the DNA topoisomerase inhibitor idarubicin against Trypanosoma rangeli and Trypanosoma cruzi. Mem Inst Oswaldo Cruz 107(7):946–950CrossRefPubMedGoogle Scholar
  19. 19.
    Tritton TR, Yee G (1982) The anticancer agent adriamycin can be actively cytotoxic without entering cells. Science 217(248)Google Scholar
  20. 20.
    Chiquero MJ, Pérez-Victori JM, Ovalle F, González-Ros JM, del Moral RC, Ferragut JA, Castanys S (1998) Altered Drug Membrane Permeability in a Multidrug-Resistant Leishmania tropica Line. Biochem Pharm 55:131–139CrossRefPubMedGoogle Scholar
  21. 21.
    Gonzalez RC, Wood RE (2008) Digital image processing. Pearson: Prentice Hall, Upper Saddle RiverGoogle Scholar
  22. 22.
    Gonzalez-Pena Y et al (2014) Monitoring of the action of drugs in melanoma cells by dynamic laser speckle. J Biomed Opt 19(5):057008CrossRefPubMedGoogle Scholar
  23. 23.
    Cardoso RR et al (2012) Alternative protocols on dynamic speckle laser analysis. Proc of SPIE 8413:8413FGoogle Scholar
  24. 24.
    Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67(5):786–804CrossRefGoogle Scholar
  25. 25.
    Oulamara A et al (1989) Biological activity measurement on botanical soecimen surfaces using temporal decorrelation effect of laser speckle. J Mod Opt 36(2):165–179CrossRefGoogle Scholar
  26. 26.
    Xu Z et al (1995) Temporal and spatial properties of time-varying speckles of botanical specimens. Opt Eng 34(5):1487–1502CrossRefGoogle Scholar
  27. 27.
    Zhong X et al (2014) Normal vector based dynamic laser speckle analysis for plant water status monitoring. Optics Communications 313:256–262CrossRefGoogle Scholar
  28. 28.
    Zhong X et al (2013) Dynamic laser speckle analysis via normal vector space statistics. Optics Communications 305:27–35CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.Biomedical Optics Laboratory, Department of Applied PhysicsIndian School of MinesDhanbadIndia
  2. 2.Facultad de Farmacia y Bioanálisis, Universidad de los AndesMéridaVenezuela
  3. 3.Centro Multidisciplinario de Ciencias, Instituto Venezolano de Investigaciones CientíficasMéridaVenezuela
  4. 4.SPIE-ICTP Anchor Research in Optics Program Laboratory, International Centre for Theoretical Physics (ICTP)TriesteItaly

Personalised recommendations