Advertisement

Lasers in Medical Science

, Volume 31, Issue 6, pp 1245–1250 | Cite as

Effects of photobiomodulation therapy (PBMT) on bovine sperm function

  • Adriano F. P. Siqueira
  • Fernanda S. Maria
  • Camilla M. Mendes
  • Thais R. S. Hamilton
  • Andressa Dalmazzo
  • Thiago R. Dreyer
  • Herculano M. da Silva
  • Marcilio Nichi
  • Marcella P. Milazzotto
  • José A. Visintin
  • Mayra E. O. A. Assumpção
Original Article

Abstract

Fertilization rates and subsequent embryo development rely on sperm factors related to semen quality and viability. Photobiomodulation therapy (PBMT) is based on emission of electromagnetic waves of a laser optical system that interact with cells and tissues resulting in biological effects. This interaction is mediated by photoacceptors that absorb the electromagnetic energy. Effects are dependent of irradiation parameters, target cell type, and species. In sperm, PBMT improves several features like motility and viability, affecting sperm aerobic metabolism and energy production. The aim of this study was to investigate, under same conditions, how different output powers (5, 7.5, and 10 mW) and time of irradiation (5 and 10 min) of laser (He-Ne laser, 633 nm) may affect frozen/thawed bovine sperm functions. Results showed significant effects depending on power while using 10 min of irradiation on motility parameters and mitochondrial potential. However, no effect was observed using 5 min of irradiation, regardless of power applied. In conclusion, PBMT is effective to modulate bovine sperm function. The effectiveness is dependent on the interaction between power applied and duration of irradiation, showing that these two parameters simultaneously influence sperm function. In this context, when using the same fluency and energy with different combinations of power and time of exposure, we observed distinct effects, revealing that biological effects should be also based on simple parameters rather than only composite parameters such as fluency, irradiance and energy. Laser irradiation of frozen/thawed bovine semen led to an increase on mitochondrial function and motility parameters that could potentially improve fertility rates.

Keywords

Phothobiomodulatory effects Low level laser therapy He-Ne laser Flow cytometry Motility 

Notes

Acknowledgments

This work received financial support from FAPESP (2007/58487-1; 2009/04770-0). We would like to thank Taciana Depra Magrini from Centro de Ciências Naturais e Humanas (CCNH), Federal University of ABC for technical support of the optic system.

References

  1. 1.
    Peplow PV, Chung T, Baxter D (2010) Laser photobiomodulation of proliferation of cells in culture: a review of human and animal studies. Photomed Laser Surg 28(1):S3–S40CrossRefPubMedGoogle Scholar
  2. 2.
    Laakso L, Richardson C, Cramond T (1993) Factors affecting low level laser therapy. Aust J Physiother 39:95–99CrossRefPubMedGoogle Scholar
  3. 3.
    Passarella S, Dechecchi MC, Quagliariello E (1981) Optical and biochemical properties of NADH irratiated by high peak power q-switched ruby laser or by low power C.W. HeNe laser. Bioelectrochem Bioenerg 8:315–326CrossRefGoogle Scholar
  4. 4.
    Karu T (1987) Photobiological fundamentals of low-power laser therapy. IEEE J Quantum Electron (QE-23)10:1703–1717Google Scholar
  5. 5.
    Karu T, Pyatibrat L, Kalendo G (1995) Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol B Biol 27:219–223CrossRefGoogle Scholar
  6. 6.
    Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B Biol 49:1–17CrossRefGoogle Scholar
  7. 7.
    Lavi R, Ankri R, Sinyakov M, Eichler M, Friedmann H, Shainberg A, Breibart H, Lubart R (2012) The plasma membrane is involved in the visible ligh-tissue interaction. Photomed Laser Surg 30(1):14–19CrossRefPubMedGoogle Scholar
  8. 8.
    Lubart R, Friedmann H, Levinshal T, Lavie R, Breitbart H (1992) Effect of light on calcium transport in bull sperm cells. J Photochem Photobiol B Biol 15:337–341CrossRefGoogle Scholar
  9. 9.
    O’Flaherty C, Lamirande E, Gagnon C (2006) Positive role of reactive oxygen species in mammalian sperm capacitation: triggering and modulation of phosphorylation events. Free Radic Biol Med 41:528–540CrossRefPubMedGoogle Scholar
  10. 10.
    De Lamirande E, Gagnon C (1993) A positive role for the superoxide anion in triggering hyperactivation and capacitation of human spermatozoa. Int J Androl 16:21–25CrossRefPubMedGoogle Scholar
  11. 11.
    De Lamirande E, Jiang H, Zini A, Kodama H, Gagnon C (1997) Reactive oxygen species and sperm physiology. Rev Reprod 2(1):48–54CrossRefPubMedGoogle Scholar
  12. 12.
    O’Flaherty C, Beorlegui N, Beconi M (1999) Reactive oxygen species requirements for bovine sperm capacitation and acrosome reaction. Theriogenology 52(99):289–301CrossRefPubMedGoogle Scholar
  13. 13.
    O’Flaherty C, Beorlegui N, Beconi MT (2003) Participation of superoxide anion in the capacitation of cryopreserved bovine sperm. Int J Androl 26(2):109–114CrossRefPubMedGoogle Scholar
  14. 14.
    Rivlin J, Mendel J, Rubinstein S, Etkovitz N, Breitbart H (2004) Role of hydrogen peroxide in sperm capacitation and acrosome reaction. Biol Reprod 70(2):518–522CrossRefPubMedGoogle Scholar
  15. 15.
    Lubart R, Friedmann H, Lavie R (2000) Photobiostimulation as a function of different wavelengths. Laser Ther 12:38–41CrossRefGoogle Scholar
  16. 16.
    Ankri R, Friedmann H, Savion N, Kotev-Emeth S, Breitbart H, Lubart R (2010) Visible light induces NO formation in sperm and endothelial cells. Laser Surg Med 42:348–352CrossRefGoogle Scholar
  17. 17.
    Ocaña-Quero JM, Gomez-Villamandos R, Moreno-Millan M, Santistban-Valenzuela JM (1997) Biological effects of helium-neon (He-Ne) laser irradiation on acrosome reaction in bull sperm cells. J Photochem Photobiol B Biol 40:294–298CrossRefGoogle Scholar
  18. 18.
    Shahar S, Wiser A, Ickowicz D, Lubart R, Shulman A, Breibart H (2011) Light-mediated activation reveals a key role for protein kinase A and sarcoma protein kinase in the development of sperm hyper-activated motility. Hum Reprod 26(9):2274–2282CrossRefPubMedGoogle Scholar
  19. 19.
    Abdel-Salam Z, Dessouki SHM, Abdel-Salam SAM, Ibrahim MAM, Harith MA (2011) Green laser irradiation effects on buffalo sêmen. Theriogenology 75:988–994CrossRefPubMedGoogle Scholar
  20. 20.
    Corral-Baqués MI, Rigau T, Rivera M, Rodriguez JE, Rigau J (2005) Effect of 655-nm diode laser on dog sperm motility. Lasers Med Sci 20:28–34CrossRefPubMedGoogle Scholar
  21. 21.
    Corral-Baqués MI, Rivera MM, Rigau T, Rodigyez-Gil JE, Rigau J (2009) The effect of low-level laser irradiation on dog spermatozoa motility is dependent on laser output power. Laser Med Sci 24:703–713CrossRefGoogle Scholar
  22. 22.
    Iaffaldano N, Rosato MP, Paventi G, Pizzuto R, Gambacorta M, Manchisi A, Passarella S (2010) The irradiation of rabbit sperm cells with He-Ne laser prevents their in vitro liquid storage dependent damage. Anim Reprod Sci 119:123–129CrossRefPubMedGoogle Scholar
  23. 23.
    Iaffaldano N, Meluzzi A, Manchisi A, Passarella S (2005) Improvement of stored turkey semen quality as a result of He-Ne laser irradiation. Anim Reprod Sci 85:317–325CrossRefPubMedGoogle Scholar
  24. 24.
    Firestone RS, Esfandiari N, Moskovtsev S, Burstein E, Videna GT, Librach C, Bentov Y, Casper R (2012) The effect of low-level laser light exposure on sperm motion characteristics and DNA damage. J Androl 33(3):469–473CrossRefPubMedGoogle Scholar
  25. 25.
    Parrish JJ, Susko-Parrish JL, Winer MA, Fisrt NL (1988) Capacitation of bovine sperm by heparin. Biol Reprod 38:1171–1180CrossRefPubMedGoogle Scholar
  26. 26.
    Goovaerts IGF, Hoflack GG, Van Soom A, Dewulf J, Nich M, De Kruif A, Bols PEJ (2006) Evaluation of epididymal semen quality using the Hamilton-Thorne analyser indicates variation between the two caudae epididymides of the same bull. Theriogenology 66:323–330CrossRefPubMedGoogle Scholar
  27. 27.
    Celeghini EC, De Arruda RP, De Andrade AFC, Nascimento J, Raphael CF (2007) Pratical techniques for bovine sperm simultaneous fluorimetric assessment of plasma, acrosomal and mitochondrial membranes. Reprod Domest Anim 42:479–488CrossRefPubMedGoogle Scholar
  28. 28.
    Simões R, Feitosa WB, Siqueira AFP, Nichi M, Paula-Lopes FF, Marques MG, Peres MA, Barnabe VH, Visintin JA, Assumpção MEO (2013) Influence of bovine sperm DNA fragmentation and oxidative stress on embryo in vitro development outcome. Reproduction 146:433–441CrossRefPubMedGoogle Scholar
  29. 29.
    Shahar S, Wiser A, Ickowicz D, Lubart R, Shulman A, Breitbart H (2011) Light-mediated activation reveals a key role for protein kinase A and sarcoma protein kinase in the development of sperm hyper-activatde motility. Human Reprod:1–9Google Scholar
  30. 30.
    Iaffaldano N, Paventi G, Pizzuto R, Passarella S, Cerolini S, Zaniboni L, Marzoni M, Castillo A, Rosato MP (2013) The post-thaw irradiation of avian spermatozoa with He-Ne laser differently affects chicken, pheasant and turkey sperm quality. Anim Reprod Sci 142:168–172CrossRefPubMedGoogle Scholar
  31. 31.
    Yazdi RS, Bakhshi S, Alipoor FJ, Akhoond MR, Borhani S, Farrahi F, Panah ML, Gilani MAS (2014) Effect of 830-nm diode laser irradiation on human sperm motility. Lasers Med Sci 29:97–124CrossRefGoogle Scholar
  32. 32.
    Cohen N, Lubart R, Rubinstein S, Breitbart H (1998) Light irradiation of mouse spermatozoa: stimulation of in vitro fertilization and calcium signals. Photochem Photobiol 68(3):407–413CrossRefPubMedGoogle Scholar
  33. 33.
    Fernandes GHC, Carvalho P de TC, Serra AJ, Crespilho AM, Peron JPS, Rossato C, Leal-Junior ECP, Albertini R (2015) The effect of low-level laser irradiation on sperm motility, and integrity of the plasma membrane and acrosome in cryopreserved bovine sperm. Plos One 10(3)Google Scholar
  34. 34.
    Dreyer TR, Siqueira AFP, Magrini TD, Fiorito PA, Assumpção MEOA, Nichi M, Martinho HS, Milazzotto MP (2011) Biochemical and topological analysis of bovine sperm cells induced by low power laser irradiation. Medical laser applications and laser tissue interactions. Proc. SPIE v., 8092, 80920VGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Adriano F. P. Siqueira
    • 1
  • Fernanda S. Maria
    • 1
  • Camilla M. Mendes
    • 1
    • 2
  • Thais R. S. Hamilton
    • 1
  • Andressa Dalmazzo
    • 3
  • Thiago R. Dreyer
    • 4
  • Herculano M. da Silva
    • 4
  • Marcilio Nichi
    • 3
  • Marcella P. Milazzotto
    • 4
  • José A. Visintin
    • 2
  • Mayra E. O. A. Assumpção
    • 1
  1. 1.Laboratory of Spermatozoa Biology, School of Veterinary Medicine and Animal Science, Department of Animal ReproductionUniversity of São PauloSão PauloBrazil
  2. 2.Laboratory of in vitro Fertilization, Cloning and Animal Transgenesis, School of Veterinary Medicine and Animal Science, Department of Animal ReproductionUniversity of São PauloSão PauloBrazil
  3. 3.Laboratory of Andrology, School of Veterinary Medicine and Animal Science, Department of Animal ReproductionUniversity of São PauloSão PauloBrazil
  4. 4.Centro de Ciências Naturais e Humanas (CCNH)Federal University of ABCSanto AndréBrazil

Personalised recommendations