Lasers in Medical Science

, Volume 31, Issue 5, pp 965–972 | Cite as

The new heterologous fibrin sealant in combination with low-level laser therapy (LLLT) in the repair of the buccal branch of the facial nerve

  • Daniela Vieira Buchaim
  • Antonio de Castro Rodrigues
  • Rogerio Leone Buchaim
  • Benedito Barraviera
  • Rui Seabra Ferreira Junior
  • Geraldo Marco Rosa Junior
  • Cleuber Rodrigo de Souza Bueno
  • Domingos Donizeti Roque
  • Daniel Ventura Dias
  • Leticia Rossi Dare
  • Jesus Carlos Andreo
Original Article


This study aimed to evaluate the effects of low-level laser therapy (LLLT) in the repair of the buccal branch of the facial nerve with two surgical techniques: end-to-end epineural suture and coaptation with heterologous fibrin sealant. Forty-two male Wistar rats were randomly divided into five groups: control group (CG) in which the buccal branch of the facial nerve was collected without injury; (2) experimental group with suture (EGS) and experimental group with fibrin (EGF): The buccal branch of the facial nerve was transected on both sides of the face. End-to-end suture was performed on the right side and fibrin sealant on the left side; (3) Experimental group with suture and laser (EGSL) and experimental group with fibrin and laser (EGFL). All animals underwent the same surgical procedures in the EGS and EGF groups, in combination with the application of LLLT (wavelength of 830 nm, 30 mW optical power output of potency, and energy density of 6 J/cm2). The animals of the five groups were euthanized at 5 weeks post-surgery and 10 weeks post-surgery. Axonal sprouting was observed in the distal stump of the facial nerve in all experimental groups. The observed morphology was similar to the fibers of the control group, with a predominance of myelinated fibers. In the final period of the experiment, the EGSL presented the closest results to the CG, in all variables measured, except in the axon area. Both surgical techniques analyzed were effective in the treatment of peripheral nerve injuries, where the use of fibrin sealant allowed the manipulation of the nerve stumps without trauma. LLLT exhibited satisfactory results on facial nerve regeneration, being therefore a useful technique to stimulate axonal regeneration process.


Facial nerve Fibrin sealant Low-level laser therapy Nerve regeneration Peripheral nerve injury 


  1. 1.
    Dougall A, Fiske J (2008) Access to special care dentistry, part 9. Special care dentistry services for older people. Br Dent J 205(8):421–434CrossRefPubMedGoogle Scholar
  2. 2.
    Ozsoy U, Hizay A, Demirel BM, Ozsoy O, Bilmen Sarikcioglu S, Turhan M, Sarikcioglu L (2011) The hypoglossal-facial nerve repair as a method to improve recovery of motor function after facial nerve injury. Ann Anat 193(4):304–313CrossRefPubMedGoogle Scholar
  3. 3.
    Tong Y, Chen J, Ji Q (2010) A unified probabilistic framework for spontaneous facial action modeling and understanding. IEEE Trans Pattern Anal Mach Intell 32(2):258–273CrossRefPubMedGoogle Scholar
  4. 4.
    Fattah A, Borschel GH, Zuker RM (2011) Reconstruction of facial nerve injuries in children. J Craniofac Surg 22(3):782–788CrossRefPubMedGoogle Scholar
  5. 5.
    Hundeshagen G, Szameit K, Thieme H, Finkensieper M, Angelov DN, Guntinas-Lichius O, Irintchev A (2013) Deficient functional recovery after facial nerve crush in rats is associated with restricted rearrangements of synaptic terminals in the facial nucleus. Neuroscience 248:307–318CrossRefPubMedGoogle Scholar
  6. 6.
    Thorén H, Snäll J, Salo J, Suominen-Taipale L, Kormi E, Lindqvist C, Törnwall J (2010) Occurrence and types of associated injuries in patients with fractures of the facial bones. J Oral Maxillofac Surg 68(4):805–810CrossRefPubMedGoogle Scholar
  7. 7.
    Seddon HJ (1943) Three types of nerve injury. Brain 66:237–288CrossRefGoogle Scholar
  8. 8.
    Friedman AH, Elias WJ, Midha R (2009) Introduction: peripheral nerve surgery--biology, entrapment, and injuries. Neurosurg Focus 26(2), E1CrossRefPubMedGoogle Scholar
  9. 9.
    Félix SP, Pereira Lopes FR, Marques SA, Martinez AM (2013) Comparison between suture and fibrin glue on repair by direct coaptation or tubulization of injured mouse sciatic nerve. Microsurgery 33(6):468–477CrossRefPubMedGoogle Scholar
  10. 10.
    Sinis N, Geuna S, Viterbo F (2014) Translational research in peripheral nerve repair and regeneration. Biomed Res Int 2014:381426CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Johnson EO, Soucacos PN (2008) Nerve repair: experimental and clinical evaluation of biodegradable artificial nerve guides. Injury 39(Suppl 3):S30–S36CrossRefPubMedGoogle Scholar
  12. 12.
    Ray WZ, Mackinnon SE (2010) Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp Neurol 223(1):77–85CrossRefPubMedGoogle Scholar
  13. 13.
    Attar BM, Zalzali H, Razavi M, Ghoreishian M, Rezaei M (2012) Effectiveness of fibrin adhesive in facial nerve anastomosis in dogs compared with standard microsuturing technique. J Oral Maxillofac Surg 70(10):2427–2432CrossRefPubMedGoogle Scholar
  14. 14.
    Tetik C, Ozer K, Ayhan S, Siemionow K, Browne E, Siemionow M (2002) Conventional versus epineural sleeve neurorrhaphy technique: functional and histomorphometric analysis. Ann Plast Surg 49(4):397–403CrossRefPubMedGoogle Scholar
  15. 15.
    Grinsell D, Keating CP (2014) Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. Biomed Res Int 2014:698256CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Barros LC, Ferreira RS Jr, Barraviera SR, Stolf HO, Thomazini-Santos IA, Mendes-Giannini MJ, Toscano E, Barraviera B (2009) A new fibrin sealant from Crotalus durissus terrificus venom: applications in medicine. J Toxicol Environ Health B Crit Rev 12(8):553–571CrossRefPubMedGoogle Scholar
  17. 17.
    Sandrini FA, Pereira-Júnior ED, Gay-Escoda C (2007) Rabbit facial nerve anastomosis with fibrin glue: nerve conduction velocity evaluation. Braz J Otorhinolaryngol 73(2):196–201CrossRefPubMedGoogle Scholar
  18. 18.
    Martins RS, Siqueira MG, Silva CF, Godoy BO, Pereira JP (2005) Electrophysiological evaluation of sciatic nerve regeneration rat, with use of suture, fibrin glue or combination of both techniques. Arq Neuropsiquiatr 63(3A):601–604CrossRefPubMedGoogle Scholar
  19. 19.
    Rochkind S, Leider-Trejo L, Nissan M, Shamir MH, Kharenko O, Alon M (2007) Efficacy of 780-nm laser phototherapy on peripheral nerve regeneration after neurotube reconstruction procedure (double-blind randomized study). Photomed Laser Surg 25(3):137–143CrossRefPubMedGoogle Scholar
  20. 20.
    Rochkind S, Geuna S, Shainberg A (2009) Chapter 25: phototherapy in peripheral nerve injury: effects on muscle preservation and nerve regeneration. Int Rev Neurobiol 87:445–464CrossRefPubMedGoogle Scholar
  21. 21.
    Walsh S, Midha R (2009) Practical considerations concerning the use of stem cells for peripheral nerve repair. Neurosurg Focus 26(2), E2CrossRefPubMedGoogle Scholar
  22. 22.
    Akgul T, Gulsoy M, Gulcur HO (2014) Effects of early and delayed laser application on nerve regeneration. Lasers Med Sci 29(1):351–357CrossRefPubMedGoogle Scholar
  23. 23.
    Thomazini-Santos IA, Barraviera SRCS, Mendes-Giannini MJS, Barraviera B B, Surgical adhesives (2001) J Venom Anim Toxins 7(2):159–171CrossRefGoogle Scholar
  24. 24.
    Barros LC, Soares AM, Costa FL, Rodrigues VM, Fuly AL, Giglio JR, Gallacci M, Thomazini-Santos IA, Barraviera SRCS, Barraviera B, Ferreira Junior RS (2011) Biochemical and biological evaluation of gyroxin isolated from Crotalus durissus terrificus venom. J Venom Anim Toxins incl Trop Dis 17(1):23–33CrossRefGoogle Scholar
  25. 25.
    Gasparotto VP, Landim-Alvarenga FC, Oliveira AL, Simões GF, Lima-Neto JF, Barraviera B, Ferreira RS (2014) A new fibrin sealant as a three-dimensional scaffold candidate for mesenchymal stem cells. Stem Cell Res Ther 5(3):78CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Seabra Ferreira R Jr (2014) Autologous or heterologous fibrin sealant scaffold: which is the better choice? J Venom Anim Toxins Incl Trop Dis 20:31CrossRefGoogle Scholar
  27. 27.
    Wang CZ, Chen YJ, Wang YH, Yeh ML, Huang MH, Ho ML, Liang JI, Chen CH (2014) Low-level laser irradiation improves functional recovery and nerve regeneration in sciatic nerve crush rat injury model. PLoS ONE 9(8), e103348CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Anders JJ, Moges H, Wu X, Erbele ID, Alberico SL, Saidu EK, Smith JT, Pryor BA (2014) In vitro and in vivo optimization of infrared laser treatment for injured peripheral nerves. Lasers Surg Med 46(1):34–45CrossRefPubMedGoogle Scholar
  29. 29.
    Buchaim RL, Andreo JC, Barraviera B, Ferreira Junior RS, Buchaim DV, Rosa Junior GM, de Oliveira AL, de Castro RA (2015) Effect of low-level laser therapy (LLLT) on peripheral nerve regeneration using fibrin glue derived from snake venom. Injury 46(4):655–660CrossRefPubMedGoogle Scholar
  30. 30.
    Ganga MV, Coutinho-Netto J, Colli BO, Marques Junior W, Catalão CH, Santana RT, Oltramari MR, Carraro KT, Lachat JJ, Lopes Lda S (2012) Sciatic nerve regeneration in rats by a nerve conduit engineering with a membrane derived from natural latex. Acta Cir Bras 27(12):885–891CrossRefPubMedGoogle Scholar
  31. 31.
    Brenner MJ, Moradzadeh A, Myckatyn TM, Tung TH, Mendez AB, Hunter DA, Mackinnon SE (2008) Role of timing in assessment of nerve regeneration. Microsurgery 28(4):265–272CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Suri A, Mehta VS, Sarkar C (2002) Microneural anastomosis with fibrin glue: an experimental study. Neurol India 50(1):23–26PubMedGoogle Scholar
  33. 33.
    Whitlock EL, Kasukurthi R, Yan Y, Tung TH, Hunter DA, Mackinnon SE (2010) Fibrin glue mitigates the learning curve of microneurosurgical repair. Microsurgery 30(3):218–222PubMedGoogle Scholar
  34. 34.
    Sameem M, Wood TJ, Bain JR (2011) A systematic review on the use of fibrin glue for peripheral nerve repair. Plast Reconstr Surg 127(6):2381–2390CrossRefPubMedGoogle Scholar
  35. 35.
    Barbizan R, Castro MV, Rodrigues AC, Barraviera B, Ferreira RS, Oliveira AL (2013) Motor recovery and synaptic preservation after ventral root avulsion and repair with a fibrin sealant derived from snake venom. PLoS ONE 8(5), e63260CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Li Y, Zhang Y, Han W, Hu F, Qian Y, Chen Q (2013) TRO19622 promotes myelin repair in a rat model of demyelination. Int J Neurosci 123(11):810–822CrossRefPubMedGoogle Scholar
  37. 37.
    Moimas S, Novati F, Ronchi G, Zacchigna S, Fregnan F, Zentilin L, Papa G, Giacca M, Geuna S, Perroteau I, Arnež ZM, Raimondo S (2013) Effect of vascular endothelial growth factor gene therapy on post-traumatic peripheral nerve regeneration and denervation-related muscle atrophy. Gene Ther 20(10):1014–1021CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Machado EG, Issa JP, Figueiredo FA, Santos GR, Galdeano EA, Alves MC, Chacon EL, Ferreira Junior RS, Barraviera B, Cunha MR (2015) A new heterologous fibrin sealant as scaffold to recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins for the repair of tibial bone defects. Acta Histochem 117(3):288–296CrossRefPubMedGoogle Scholar
  39. 39.
    Cartarozzi LP, Spejo AB, Ferreira RS Jr, Barraviera B, Duek E, Carvalho JL, Góes AM, Oliveira AL (2015) Mesenchymal stem cells engrafted in a fibrin scaffold stimulate Schwann cell reactivity and axonal regeneration following sciatic nerve tubulization. Brain Res Bull 112:14–24CrossRefPubMedGoogle Scholar
  40. 40.
    Xu K, Terakawa S (1999) Fenestration nodes and the wide submyelinic space form the basis for the unusually fast impulse conduction of shrimp myelinated axons. J Exp Biol 202(Pt 15):1979–1989PubMedGoogle Scholar
  41. 41.
    Waitayawinyu T, Parisi DM, Miller B, Luria S, Morton HJ, Chin SH, Trumble TE (2007) A comparison of polyglycolic acid versus type 1 collagen bioabsorbable nerve conduits in a rat model: an alternative to autografting. J Hand Surg [Am] 32(10):1521–1529CrossRefGoogle Scholar
  42. 42.
    Moore AC, Mark TE, Hogan AK, Topczewski J, LeClair EE (2012) Peripheral axons of the adult zebrafish maxillary barbel extensively remyelinate during sensory appendage regeneration. J Comp Neurol 520(18):4184–4203CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Shin DH, Lee E, Hyun JK, Lee SJ, Chang YP et al (2003) Growth-associated protein-43 is elevated in the injured rat sciatic nerve after low power laser irradiation. Neurosci Lett 344:71–74CrossRefPubMedGoogle Scholar
  44. 44.
    Câmara CN, Brito MV, Silveira EL, Silva DS, Simões VR, Pontes RW (2011) Histological analysis of low-intensity laser therapy effects in peripheral nerve regeneration in Wistar rats. Acta Cir Bras 26(1):12–18CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Daniela Vieira Buchaim
    • 1
  • Antonio de Castro Rodrigues
    • 2
  • Rogerio Leone Buchaim
    • 2
  • Benedito Barraviera
    • 3
  • Rui Seabra Ferreira Junior
    • 3
  • Geraldo Marco Rosa Junior
    • 4
  • Cleuber Rodrigo de Souza Bueno
    • 4
  • Domingos Donizeti Roque
    • 1
  • Daniel Ventura Dias
    • 5
  • Leticia Rossi Dare
    • 5
  • Jesus Carlos Andreo
    • 2
  1. 1.Human Morphophysiology (Anatomy), Faculty of MedicineUniversity of Marilia (UNIMAR)MariliaBrazil
  2. 2.Department of Biological Sciences (Anatomy), Bauru School of DentistryUniversity of São PauloBauruBrazil
  3. 3.Center for the Study of Venoms and Venomous Animals (CEVAP)São Paulo State University (UNESP—Univ Estadual Paulista)BotucatuBrazil
  4. 4.University of the Sacred HeartBauruBrazil
  5. 5.Federal University of Pampa—UNIPAMPAUruguaianaBrazil

Personalised recommendations