Lasers in Medical Science

, Volume 31, Issue 4, pp 767–777 | Cite as

Photobiomodulation on human annulus fibrosus cells during the intervertebral disk degeneration: extracellular matrix-modifying enzymes

  • Min Ho Hwang
  • Kyoung Soo Kim
  • Chang Min Yoo
  • Jae Hee Shin
  • Hyo Geun Nam
  • Jin Su Jeong
  • Joo Han Kim
  • Kwang Ho Lee
  • Hyuk Choi
Original Article


Destruction of extracellular matrix (ECM) leads to degeneration of the intervertebral disk (IVD), which is a major contributor to many spine disorders. IVD degeneration is induced by pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β), which are secreted by immune cells, including macrophages and neutrophils. The cytokines modulate ECM-modifying enzymes such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in human annulus fibrosus (AF) cells. The resulting imbalance in catabolic and anabolic enzymes can cause generalized back, neck, and low back pain (LBP). Photobiomodulation (PBM) is known to regulate inflammatory responses and wound healing. The aim of this study was to mimic the degenerative IVD microenvironment, and to investigate the effect of a variety of PBM conditions (wavelength: 635, 525, and 470 nm; energy density: 16, 32, and 64 J/cm2) on the production of ECM-modifying-enzymes by AF cells under degenerative conditions induced by macrophage-conditioned medium (MCM), which contains pro-inflammatory cytokines such as TNF-α and IL-β secreted by macrophage during the development of intervertebral disk inflammation. We showed that the MCM-stimulated AF cells express imbalanced ratios of TIMPs (TIMP-1 and TIMP-2) and MMPs (MMP-1 and MMP-3). PBM selectively modulated the production of ECM-modifying enzymes in AF cells. These results suggest that PBM can be a therapeutic tool for degenerative IVD disorders.


Photobiomodulation Human annulus fibrosus Intervertebral disk degeneration Inflammation Extracellular matrix 


  1. 1.
    Walker BF (2000) The prevalence of low back pain: a systematic review of the literature from 1966 to 1998. J Spinal Disord Tech 13(3):205–217CrossRefGoogle Scholar
  2. 2.
    Freemont AJ, Peacock TE, Goupille P, Hoyland JA, O’Brien J, Jayson MI (1997) Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet 350(9072):178–181CrossRefPubMedGoogle Scholar
  3. 3.
    Coppes MH, Marani E, Thomeer RT, Groen GJ (1997) Innervation of “painful” lumbar discs. Spine 22(20):2342–2349CrossRefPubMedGoogle Scholar
  4. 4.
    Risbud MV, Shapiro IM (2014) Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol 10(1):44–56. doi:10.1038/nrrheum.2013.160 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kokubo Y, Uchida K, Kobayashi S, Yayama T, Sato R, Nakajima H, Takamura T, Mwaka E, Orwotho N, Bangirana A (2008) Herniated and spondylotic intervertebral discs of the human cervical spine: histological and immunohistological findings in 500 en bloc surgical samples. J Neurosurg Spine 9(3):285–295CrossRefPubMedGoogle Scholar
  6. 6.
    Shamji MF, Setton LA, Jarvis W, So S, Chen J, Jing L, Bullock R, Isaacs RE, Brown C, Richardson WJ (2010) Proinflammatory cytokine expression profile in degenerated and herniated human intervertebral disc tissues. Arthritis Rheum 62(7):1974–1982. doi:10.1002/art.27444 PubMedPubMedCentralGoogle Scholar
  7. 7.
    Kim JH, Choi H, Suh MJ, Shin JH, Hwang MH, Lee H-M (2013) Effect of biphasic electrical current stimulation on IL-1β–stimulated annulus fibrosus cells using in vitro microcurrent generating chamber system. Spine 38(22):E1368–E1376CrossRefPubMedGoogle Scholar
  8. 8.
    Kim JH, Studer RK, Sowa GA, Vo NV, Kang JD (2008) Activated macrophage-like THP-1 cells modulate anulus fibrosus cell production of inflammatory mediators in response to cytokines. Spine 33(21):2253–2259CrossRefPubMedGoogle Scholar
  9. 9.
    Park JJ, Moon HJ, Park JH, Kwon TH, Park Y-K, Kim JH (2016) Induction of proinflammatory cytokine production in intervertebral disc cells by macrophage-like THP-1 cells requires mitogen-activated protein kinase activity. J Neurosurg Spine 24(1):167–175CrossRefPubMedGoogle Scholar
  10. 10.
    Takada T, Nishida K, Maeno K, Kakutani K, Yurube T, Doita M, Kurosaka M (2012) Intervertebral disc and macrophage interaction induces mechanical hyperalgesia and cytokine production in a herniated disc model in rats. Arthritis Rheum 64(8):2601–2610CrossRefPubMedGoogle Scholar
  11. 11.
    Hwang MH, Shin JH, Kim KS, Yoo CM, Jo GE, Kim JH, Choi H (2015) Low level light therapy modulates inflammatory mediators secreted by human annulus fibrosus cells during intervertebral disc degeneration in vitro. Photochem Photobiol 91(2):403–410CrossRefPubMedGoogle Scholar
  12. 12.
    Sakai D, Nakamura Y, Nakai T, Mishima T, Kato S, Grad S, Alini M, Risbud MV, Chan D, Cheah KS (2012) Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat Commun 3:1264CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Biyani A, Andersson GB (2004) Low back pain: pathophysiology and management. J Am Acad Orthop Surg 12(2):106–115CrossRefPubMedGoogle Scholar
  14. 14.
    Fernandes JC, Martel-Pelletier J, Pelletier J-P (2002) The role of cytokines in osteoarthritis pathophysiology. Biorheology 39(2):237–246PubMedGoogle Scholar
  15. 15.
    Bachmeier BE, Nerlich A, Mittermaier N, Weiler C, Lumenta C, Wuertz K, Boos N (2009) Matrix metalloproteinase expression levels suggest distinct enzyme roles during lumbar disc herniation and degeneration. Eur Spine J 18(11):1573–1586CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Pockert AJ, Richardson SM, Le Maitre CL, Lyon M, Deakin JA, Buttle DJ, Freemont AJ, Hoyland JA (2009) Modified expression of the ADAMTS enzymes and tissue inhibitor of metalloproteinases 3 during human intervertebral disc degeneration. Arthritis Rheum 60(2):482–491CrossRefPubMedGoogle Scholar
  17. 17.
    Chen CH, Hung HS, Hsu S (2008) Low‐energy laser irradiation increases endothelial cell proliferation, migration, and eNOS gene expression possibly via PI3K signal pathway. Lasers Surg Med 40(1):46–54. doi:10.1002/lsm.20589 CrossRefPubMedGoogle Scholar
  18. 18.
    Chen CH, Tsai JL, Wang YH, Lee CL, Chen JK, Huang MH (2009) Low‐level laser irradiation promotes cell proliferation and mRNA expression of type I collagen and decorin in porcine achilles tendon fibroblasts in vitro. J Orthop Res 27(5):646–650. doi:10.1002/jor.20800 CrossRefPubMedGoogle Scholar
  19. 19.
    Gulsoy M, Ozer GH, Bozkulak O, Tabakoglu HO, Aktas E, Deniz G, Ertan C (2006) The biological effects of 632.8-nm low energy He–Ne laser on peripheral blood mononuclear cells in vitro. J Photochem Photobiol B Biol 82(3):199–202. doi:10.1016/j.jphotobiol.2005.11.004 CrossRefGoogle Scholar
  20. 20.
    Houreld N, Abrahamse H (2007) Effectiveness of helium-neon laser irradiation on viability and cytotoxicity of diabetic-wounded fibroblast cells. Photomed Laser Surg 25(6):474–481. doi:10.1089/pho.2007.1095 CrossRefPubMedGoogle Scholar
  21. 21.
    Bortone F, Santos H, Albertini R, Pesquero J, Costa M, Silva J (2008) Low level laser therapy modulates kinin receptors mRNA expression in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation. Int Immunopharmacol 8(2):206–210. doi:10.1016/j.intimp.2007.09.004 CrossRefPubMedGoogle Scholar
  22. 22.
    Guerra FDR, Vieira CP, Almeida MS, Oliveira LP, de Aro AA, Pimentel ER (2013) LLLT improves tendon healing through increase of MMP activity and collagen synthesis. Lasers Med Sci 28(5):1281–1288. doi:10.1007/s10103-012-1236-7 CrossRefGoogle Scholar
  23. 23.
    Chen AC, Arany PR, Huang Y-Y, Tomkinson EM, Sharma SK, Kharkwal GB, Saleem T, Mooney D, Yull FE, Blackwell TS (2011) Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One 6(7):e22453. doi:10.1371/journal.pone.0022453 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Aimbire F, de Oliveira AL, Albertini R, Correa J, de Campos CL, Lyon J, Silva J Jr, Costa M (2008) Low level laser therapy (LLLT) decreases pulmonary microvascular leakage, neutrophil influx and IL-1β levels in airway and lung from rat subjected to LPS-induced inflammation. Inflammation 31(3):189–197. doi:10.1007/s10753-008-9064-4 CrossRefPubMedGoogle Scholar
  25. 25.
    Chanput W, Mes JJ, Wichers HJ (2014) THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol 23(1):37–45. doi:10.1016/j.intimp.2014.08.002 CrossRefPubMedGoogle Scholar
  26. 26.
    Le Maitre CL, Hoyland JA, Freemont AJ (2007) Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile. Arthritis Res Ther 9(4):R77CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Séguin CA, Pilliar RM, Roughley PJ, Kandel RA (2005) Tumor necrosis factorα modulates matrix production and catabolism in nucleus pulposus tissue. Spine 30(17):1940–1948CrossRefPubMedGoogle Scholar
  28. 28.
    Ahn S-H, Cho Y-W, Ahn M-W, Jang S-H, Sohn Y-K, Kim H-S (2002) mRNA expression of cytokines and chemokines in herniated lumbar intervertebral discs. Spine 27(9):911–917CrossRefPubMedGoogle Scholar
  29. 29.
    Wang J, Tian Y, Phillips KL, Chiverton N, Haddock G, Bunning RA, Cross AK, Shapiro IM, Le Maitre CL, Risbud MV (2013) Tumor necrosis factor α–and interleukin‐1β–dependent induction of CCL3 expression by nucleus pulposus cells promotes macrophage migration through CCR1. Arthritis Rheum 65(3):832–842CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kawaguchi S, Yamashita T, Katahira G-I, Yokozawa H, Torigoe T, Sato N (2002) Chemokine profile of herniated intervertebral discs infiltrated with monocytes and macrophages. Spine 27(14):1511–1516CrossRefPubMedGoogle Scholar
  31. 31.
    Cabal-Hierro L, Lazo PS (2012) Signal transduction by tumor necrosis factor receptors. Cell Signal 24(6):1297–1305. doi:10.1016/j.cellsig.2012.02.006 CrossRefPubMedGoogle Scholar
  32. 32.
    Tian Y, Yuan W, Fujita N, Wang J, Wang H, Shapiro IM, Risbud MV (2013) Inflammatory cytokines associated with degenerative disc disease control aggrecanase-1 (ADAMTS-4) expression in nucleus pulposus cells through MAPK and NF-κB. Am J Pathol 182(6):2310–2321. doi:10.1016/j.ajpath.2013.02.037 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wang J, Markova D, Anderson DG, Zheng Z, Shapiro IM, Risbud MV (2011) TNF-α and IL-1β promote a disintegrin-like and metalloprotease with thrombospondin type I motifs (ADAMTS)-5 mediated aggrecan degradation through syndecan-4 in intervertebral disc. J Biol Chem JBC. M111. 264549Google Scholar
  34. 34.
    Le Maitre CL, Freemont AJ, Hoyland JA (2005) The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther 7(4):R732–R745. doi:10.1186/ar1732 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Roberts S, Caterson B, Menage J, Evans EH, Jaffray DC, Eisenstein SM (2000) Matrix metalloproteinases and aggrecanase—their role in disorders of the human intervertebral disc. Spine 25(23):3005–3013. doi:10.1097/00007632-200012010-00007 CrossRefPubMedGoogle Scholar
  36. 36.
    Le Maitre CL, Freemont AJ, Hoyland JA (2004) Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc. J Pathol 204(1):47–54CrossRefPubMedGoogle Scholar
  37. 37.
    Correa F, Martins RABL, Correa JC, Iversen VV, Joenson J, Bjordal JM (2007) Low-level laser therapy (GaAs λ = 904 nm) reduces inflammatory cell migration in mice with lipopolysaccharide-induced peritonitis. Photomed Laser Surg 25(4):245–249CrossRefPubMedGoogle Scholar
  38. 38.
    Boschi ES, Leite CE, Saciura VC, Caberlon E, Lunardelli A, Bitencourt S, Melo DA, Oliveira JR (2008) Anti‐inflammatory effects of low‐level laser therapy (660 nm) in the early phase in carrageenan‐induced pleurisy in rat. Lasers Surg Med 40(7):500–508. doi:10.1002/lsm.20658 CrossRefPubMedGoogle Scholar
  39. 39.
    Wu J-Y, Chen C-H, Wang C-Z, Ho M-L, Yeh M-L, Wang Y-H (2013) Low-power laser irradiation suppresses inflammatory response of human adipose-derived stem cells by modulating intracellular cyclic AMP level and NF-κB activity. PLoS One 8(1):e54067. doi:10.1371/journal.pone.0054067 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Doita M, Kanatani T, Ozaki T, Matsui N, Kurosaka M, Yoshiya S (2001) Influence of macrophage infiltration of herniated disc tissue on the production of matrix metalloproteinases leading to disc resorption. Spine (Phila Pa 1976) 26(14):1522–1527CrossRefGoogle Scholar
  41. 41.
    Zhang L, Xing D, Gao X, Wu S (2009) Low-power laser irradiation promotes cell proliferation by activating PI3K/Akt pathway. J Cell Physiol 219(3):553–562. doi:10.1002/jcp.21697 CrossRefPubMedGoogle Scholar
  42. 42.
    Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16(4):4. doi:10.1186/1423-0127-16-4 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Min Ho Hwang
    • 1
  • Kyoung Soo Kim
    • 1
  • Chang Min Yoo
    • 1
  • Jae Hee Shin
    • 1
  • Hyo Geun Nam
    • 1
  • Jin Su Jeong
    • 1
  • Joo Han Kim
    • 2
  • Kwang Ho Lee
    • 3
  • Hyuk Choi
    • 1
  1. 1.Department of Medical Sciences, Graduate School of MedicineKorea UniversitySeoulSouth Korea
  2. 2.Department of Neurosurgery, Guro Hospital, College of MedicineKorea UniversitySeoulSouth Korea
  3. 3.Department of Advanced Materials Science and Engineering, College of EngineeringKangwon National UniversityChuncheonSouth Korea

Personalised recommendations