Skip to main content
Log in

Low-level laser therapy to recovery testicular degeneration in rams: effects on seminal characteristics, scrotal temperature, plasma testosterone concentration, and testes histopathology

Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the efficiency of low-level laser therapy (LLLT) to recovery testicular degeneration in rams. In the first study, rams were induced to testicular degeneration by scrotal insulation, and then, they were treated using LLLT at 28 J/cm2 (INS28) or 56 J/cm2 (INS56) energy densities. Sperm kinetics, morphology, and membranes integrity as well as proportion of lumen area in seminiferous tubule were assessed. In the second study, rams were submitted or not to scrotal insulation and treated or not by the best protocol of LLLT defined by experiment 1 (INS28). In this study were evaluated sperm kinetics, morphology, membranes integrity, ROS production, and DNA integrity. Testosterone serum concentration and proportion of lumen area in seminiferous tubule were also analyzed. Insulation was effective in promoting sperm injuries in both experiments. Biostimulatory effect was observed in experiment 1: INS28 presented smaller proportion of lumen area (P = 0.0001) and less degeneration degree (P = 0.0002). However, in experiment 2, there was no difference between the groups (P = 0.17). In addition, LLLT did not improve sperm quality, and there was a decreasing for total and progressive motility (P = 0.02) and integrity of sperm membranes (P = 0.01) in LLLT-treated groups. Moreover, testosterone concentration was not improved by LLLT (P = 0.37). Stimulation of aerobic phosphorylation by LLLT may have led to a deregulated increase in ROS leading to sperm damages. Thus, LLLT at energy of 28 J/cm2 (808 nm of wavelength and 30 mW of power output) can induce sperm damages and increase the quantity of cells in seminiferous tubule in rams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hansen PJ (2009) Effects of heat stress on mammalian reproduction. Philos Trans R Soc Lond B Biol Sci 364:3341–3350. doi:10.1098/rstb.2009.0131

    Article  PubMed  PubMed Central  Google Scholar 

  2. Setchell BP (1998) The parkes lecture. Heat and the testis. J Reprod Fertil 114:179–194

    Article  CAS  PubMed  Google Scholar 

  3. Paul C, Teng S, Saunders PTK (2009) A single, mild, transient scrotal heat stress causes hypoxia and oxidative stress in mouse testes, which induces germ cell death. Biol Reprod 919:913–919. doi:10.1095/biolreprod.108.071779

    Article  Google Scholar 

  4. Paul C, Murray AA, Spears N, Saunders PTK (2008) A single, mild, transient scrotal heat stress causes DNA damage, subfertility and impairs formation of blastocysts in mice. Reproduction 136:73–84. doi:10.1530/REP-08-0036

    Article  CAS  PubMed  Google Scholar 

  5. Pérez-Crespo M, Pintado B, Gutiérrez-Adán A (2008) Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Mol Reprod Dev 75:40–47. doi:10.1002/mrd

    Article  PubMed  Google Scholar 

  6. Bicudo SD, Siqueira JB, Meira C (2007) Patologias do sistema reprodutor de touros. Biológico 69:43–48

    Google Scholar 

  7. Arruda RP, Silva DF, Alonso MA, Andrade AFC, Nascimento J, Gallego AM et al (2010) Nutraceuticals in reproduction of bulls and stallions. Rev Bras Zootec 39:393–400. doi:10.1590/S1516-35982010001300043

    Article  Google Scholar 

  8. Navratil L, Kymplova J (2002) Contraindications in noninvasive laser therapy: truth and fiction. J Clin Laser Med Surg 20:341–343

    Article  PubMed  Google Scholar 

  9. Barboza CAG, Ginani F, Soares DM, Henriques ÁCG, Freitas RDA (2014) Low-level laser irradiation induces in vitro proliferation of mesenchymal stem cells. Einstein (São Paulo) 12:75–81. doi:10.1590/S1679-45082014AO2824

    Article  Google Scholar 

  10. Ginani F, Soares DM, Barreto MPEV, Barboza CAG (2015) Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers Med Sci. doi:10.1007/s10103-015-1730-9

    Google Scholar 

  11. Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G (2012) The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts—an in vitro study. Lasers Med Sci 27:423–430. doi:10.1007/s10103-011-0930-1

    Article  PubMed  Google Scholar 

  12. Taha MF, Valojerdi MR (2004) Quantitative and qualitative changes of the seminiferous epithelium induced by Ga. Al. As. (830 nm) laser radiation. Lasers Surg Med 34:352–359. doi:10.1002/lsm.20027

    Article  PubMed  Google Scholar 

  13. Hasan P, Rijadi SA, Purnomo S, Kainama H (1989) The possible application of low reactive level laser therapy in the treatment of male infertility. Laser Ther 1:49–59

    Article  CAS  Google Scholar 

  14. Karu T (1987) Photobiological fundamentals of low-power laser therapy. IEEE J Quantum Electron 23:1703–1717. doi:10.1109/JQE.1987.1073236

    Article  Google Scholar 

  15. Karu T (2003) Cellular mechanisms of low power laser therapy: new questions. Lasers Med Dent 3:79–100

    Google Scholar 

  16. Basile RC, Albernaz RM, Pereira MC, Araújo R, Ferraz GC, Queiroz-Neto A (2010) Guia prático de exames termográficos em equinos. Rev Bras Med Equina 6:24–28

    Google Scholar 

  17. Bavister D, Lorraine M (1983) Development of preimplantation in a defined embryos of the golden culture medium. Biol Trace Elem Res 28:235–247

    CAS  Google Scholar 

  18. Blom E (1973) The ultrastructure of some characteristic sperm defects and a proposal for a new classification of the bull spermiogram. Nord Vet Med 25:383–391

    CAS  PubMed  Google Scholar 

  19. Celeghini ECC, Nascimento J, Raphael CF, Andrade AFC, Arruda RP (2010) Simultaneous assessment of plasmatic, acrosomal, and mitochondrial membranes in ram sperm by fluorescent probes. Arq Bras Med Vet e Zootec 62:536–543. doi:10.1590/S0102-09352010000300006

    Article  CAS  Google Scholar 

  20. Alves MBR, Andrade AFC, Arruda RP, Batissaco L, Florez-Rodriguez SA, Lançoni R et al (2015) An efficient technique to detect sperm reactive oxygen species: the Cell Rox Deep Red® fluorescent probe. Biochem Physiol Open Access 4:1–5. doi:10.4172/2168-9652.1000157

    Google Scholar 

  21. Brito LFC, Silva AEDF, Barbosa RT, Unanian MM, Kastelic JP (2003) Effects of scrotal insulation on sperm production, semen quality, and testicular echotexture in Bos indicus and Bos indicus × Bos taurus bulls. Anim Reprod Sci 79:1–15. doi:10.1016/S0378-4320(03)00082-4

    Article  PubMed  Google Scholar 

  22. Fernandes CE, Dode MAN, Pereira D, Silva AEDF (2008) Effects of scrotal insulation in Nellore bulls (Bos taurus indicus) on seminal quality and its relationship with in vitro fertilizing ability. Theriogenology 70:1560–1568. doi:10.1016/j.theriogenology.2008.07.005

    Article  CAS  PubMed  Google Scholar 

  23. Arman C, Quintana Casares PI, Sanchez-Partida LG, Setchell BP (2006) Ram sperm motility after intermittent scrotal insulation evaluated by manual and computer-assisted methods. Asian J Androl 8:411–418. doi:10.1111/j.1745-7262.2006.00145.x

    Article  CAS  PubMed  Google Scholar 

  24. Kastelic JP, Cook RB, Coulter GH, Saacke RG (1996) Insulating the scrotal neck affects semen quality and scrotal/testicular temperatures in the bull. Theriogenology 45:935–942

    Article  CAS  PubMed  Google Scholar 

  25. Mester E, Szende B, Gärtner P (1968) The effect of laser beams on the growth of hair in mice. Radiobiol Radiother 9:621–626

    CAS  Google Scholar 

  26. Gnyawali SC, Chen Y, Wu F, Bartels KE, Wicksted JP, Liu H, Sen CK, Chen WR (2008) Temperature measurement on tissue surface during laser irradiation. Eng Comput 46:159–168. doi:10.1007/s11517-007-0251-5

    Google Scholar 

  27. Farivar S, Malekshahabi T, Shiari R (2014) Biological effects of low level laser therapy. J Lasers Med Sci 5:58–62

    PubMed  PubMed Central  Google Scholar 

  28. Karu TI (1988) Molecular mechanism of the therapeutic effect of low-intensity laser irradiation. Lasers Life Sci 2:53–74

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Fábio Pogliani and Dr. Fábio Sellera for assistance to laser therapy protocols, Dr. Ricardo Strefezi for assistance in histopathology images evaluations, and Dr. José Antunes Rodrigues, technicians Marina Holanda, and Rogério Azevedo for assistance to testosterone assay. They also thank Dr. Eduardo Harry Birgel Junior, Dr. Daniela Becker Birgel, Mr. João Carlos Pinto de Campos, Mr. Márcio Donizete De Carli, and Mr. José Maria Bernardi for assistance to the animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eneiva Carla Carvalho Celeghini.

Ethics declarations

Funding

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, processes numbers 2011/16744-3, 2012/00040-0, 2012/15087-1, 2013/15745-1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, M.B.R., de Arruda, R.P., Batissaco, L. et al. Low-level laser therapy to recovery testicular degeneration in rams: effects on seminal characteristics, scrotal temperature, plasma testosterone concentration, and testes histopathology. Lasers Med Sci 31, 695–704 (2016). https://doi.org/10.1007/s10103-016-1911-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-1911-1

Keywords

Navigation