Lasers in Medical Science

, Volume 31, Issue 4, pp 679–685 | Cite as

Comparative effects of low-level laser therapy pre- and post-injury on mRNA expression of MyoD, myogenin, and IL-6 during the skeletal muscle repair

  • Agnelo Neves Alves
  • Beatriz Guimarães Ribeiro
  • Kristianne Porta Santos Fernandes
  • Nadhia Helena Costa Souza
  • Lília Alves Rocha
  • Fabio Daumas Nunes
  • Sandra Kalil Bussadori
  • Raquel Agnelli Mesquita-Ferrari
Original Article


This study analyzed the effect of pre-injury and post-injury irradiation with low-level laser therapy (LLLT) on the mRNA expression of myogenic regulatory factors and interleukin 6 (IL-6) during the skeletal muscle repair. Male rats were divided into six groups: control group, sham group, LLLT group, injury group; pre-injury LLLT group, and post-injury LLLT group. LLLT was performed with a diode laser (wavelength 780 nm; output power 40 mW’ and total energy 3.2 J). Cryoinjury was induced by two applications of a metal probe cooled in liquid nitrogen directly onto the belly of the tibialis anterior (TA) muscle. After euthanasia, the TA muscle was removed for the isolation of total RNA and analysis of MyoD, myogenin, and IL-6 using real-time quantitative PCR. Significant increases were found in the expression of MyoD mRNA at 3 and 7 days as well as the expression of myogenin mRNA at 14 days in the post-injury LLLT group in comparison to injury group. A significant reduction was found in the expression of IL-6 mRNA at 3 and 7 days in the pre-injury LLLT and post-injury LLLT groups. A significant increase in IL-6 mRNA was found at 14 days in the post-injury LLLT group in comparison to the injury group. LLLT administered following muscle injury modulates the mRNA expression of MyoD and myogenin. Moreover, the both forms of LLLT administration were able to modulate the mRNA expression of IL-6 during the muscle repair process.


Low-level laser therapy Muscle injury Regeneration Satellite cells Myogenic factors Cytokines 


  1. 1.
    Järvinen TA, Järvinen TL, Kääriäinen M, Kalimo H, Järvinen M (2005) Muscle injuries: biology and treatment. Am J Sports Med 33:745–764CrossRefPubMedGoogle Scholar
  2. 2.
    Shin EH, Caterson EJ, Jackson WM, Nesti LJ (2014) Quality of healing: defining, quantifying, and enhancing skeletal muscle healing. Wound Repair Regen 22:18–24. doi:10.1111/wrr.12163 CrossRefPubMedGoogle Scholar
  3. 3.
    Huard J, Li Y, Fu FH (2002) Muscle injuries and repair: current trends in research. J Bone Joint Surg Am 84-A:822–832PubMedGoogle Scholar
  4. 4.
    Orchard J, Best TM (2002) The management of muscle strain injuries: an early return versus the risk of recurrence. Clin J Sport Med 12:3–5CrossRefPubMedGoogle Scholar
  5. 5.
    Alves AN, Fernandes KP, Deana AM, Bussadori SK, Mesquita-Ferrari RA (2014) Effects of low-level laser therapy on skeletal muscle repair: a systematic review. Am J Phys Med Rehabil 93:1073–1085. doi:10.1097/PHM.0000000000000158 CrossRefPubMedGoogle Scholar
  6. 6.
    Tidball JG, Villalta SA (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 298:1173–1187. doi:10.1152/ajpregu.00735.2009 CrossRefGoogle Scholar
  7. 7.
    Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL, Muñoz-Cánoves P (2011) Review: aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 1:21. doi:10.1186/2044-5040-1-21 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol (1985) 91:534–551Google Scholar
  9. 9.
    Shi X, Garry DJ (2006) Muscle stem cells in development, regeneration, and disease. Genes Dev 20:1692–1708CrossRefPubMedGoogle Scholar
  10. 10.
    Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4:a008342. doi:10.1101/cshperspect.a008342 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rincon M (2012) Interleukin-6: from an inflammatory marker to a target for inflammatory diseases. Trends Immunol 33:571–577. doi:10.1016/ CrossRefPubMedGoogle Scholar
  12. 12.
    Tanaka T, Narazaki M, Kishimoto T (2014) IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 6:a016295. doi:10.1101/cshperspect.a016295 CrossRefPubMedGoogle Scholar
  13. 13.
    Hoene M, Runge H, Häring HU, Schleicher ED, Weigert C (2013) Interleukin-6 promotes myogenic differentiation of mouse skeletal muscle cells: role of the STAT3 pathway. Am J Physiol Cell Physiol 304:128–136. doi:10.1152/ajpcell.00025.2012 CrossRefGoogle Scholar
  14. 14.
    Kurosaka M, Machida S (2013) Interleukin-6-induced satellite cell proliferation is regulated by induction of the JAK2/STAT3 signalling pathway through cyclin D1 targeting. Cell Prolif 46:365–373. doi:10.1111/cpr.12045 CrossRefPubMedGoogle Scholar
  15. 15.
    Leal-Junior EC, Vanin AA, Miranda EF, de Carvalho PD, Dal Corso S, Bjordal JM (2015) Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci 30:925–939. doi:10.1007/s10103-013-1465-4 CrossRefPubMedGoogle Scholar
  16. 16.
    Ribeiro BG, Alves AN, Santos LA, Fernandes KP, Cantero TM, Gomes MT, França CM, Silva DF, Bussadori SK, Mesquita-Ferrari RA (2015) The effect of low-level laser therapy (LLLT) applied prior to muscle injury. Lasers Surg Med. doi:10.1002/lsm.22381 Google Scholar
  17. 17.
    Mesquita-Ferrari RA, Martins MD, Silva JA Jr, da Silva TD, Piovesan RF, Pavesi VC, Bussadori SK, Fernandes KP (2011) Effects of low-level laser therapy on expression of TNF-α and TGF-β in skeletal muscle during the repair process. Lasers Med Sci 26:335–340. doi:10.1007/s10103-010-0850-5 CrossRefPubMedGoogle Scholar
  18. 18.
    Fernandes KP, Alves AN, Nunes FD, Souza NH, Silva JA Jr, Bussadori SK, Ferrari RA (2013) Effect of photobiomodulation on expression of IL-1β in skeletal muscle following acute injury. Lasers Med Sci 28:1043–1046. doi:10.1007/s10103-012-1233-x CrossRefPubMedGoogle Scholar
  19. 19.
    Alves AN, Fernandes KP, Melo CA, Yamaguchi RY, França CM, Teixeira DF, Bussadori SK, Nunes FD, Mesquita-Ferrari RA (2014) Modulating effect of low-level laser therapy on fibrosis in the repair process of the tibialis anterior muscle in rats. Lasers Med Sci 29:813–821. doi:10.1007/s10103-013-1428-9 CrossRefPubMedGoogle Scholar
  20. 20.
    Piovesan RF, Fernandes KP, Alves AN, Teixeira VP, Silva Junior JA, Martins MD, Bussadori SK, Albertini R, Mesquita-Ferrari RA (2013) Effect of nandrolone decanoate on skeletal muscle repair. Int J Sports Med 34:87–92. doi:10.1055/s-0032-1311652 PubMedGoogle Scholar
  21. 21.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  22. 22.
    Megeney LA, Kablar B, Garrett K, Anderson JE, Rudnicki MA (1996) MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev 10:1173–1183CrossRefPubMedGoogle Scholar
  23. 23.
    Mastroyiannopoulos NP, Nicolaou P, Anayasa M, Uney JB, Phylactou LA (2012) Downregulation of myogenin can reverse terminal muscle cell differentiation. PLoS One 7, e29896. doi:10.1371/journal.pone CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rodrigues NC, Brunelli R, de Araújo HS, Parizotto NA, Renno AC (2013) Low-level laser therapy (LLLT) (660 nm) alters gene expression during muscle healing in rats. J Photochem Photobiol B 120:29–35. doi:10.1016/j.jphotobiol.2013.01.002 CrossRefPubMedGoogle Scholar
  25. 25.
    Brunelli RM, Rodrigues NC, Ribeiro DA, Fernandes K, Magri A, Assis L, Parizotto NA, Cliquet A Jr, Renno AC, Abreu DC (2014) The effects of 780-nm low-level laser therapy on muscle healing process after cryolesion. Lasers Med Sci 29:91–96. doi:10.1007/s10103-013-1277-6 CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang C, Li Y, Wu Y, Wang L, Wang X, Du J (2013) Interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration. J Biol Chem 288:1489–1499. doi:10.1074/jbc.M112.419788 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hirano T (1998) Interleukin 6 and its receptor: ten years later. Int Rev Immunol 16:249–284CrossRefPubMedGoogle Scholar
  28. 28.
    Muñoz-Cánoves P, Scheele C, Pedersen BK, Serrano AL (2013) Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J 280:4131–4148. doi:10.1111/febs.12338 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Haddad F, Zaldivar F, Cooper DM, Adams GR (2005) IL-6-induced skeletal muscle atrophy. J Appl Physiol (1985) 98:911–917CrossRefGoogle Scholar
  30. 30.
    Lopes-Martins RA, Marcos RL, Leonardo PS, Prianti AC Jr, Muscará MN, Aimbire F, Frigo L, Iversen VV, Bjordal JM (2006) Effect of low-level laser (Ga-Al-As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J Appl Physiol (1985) 101:283–288CrossRefGoogle Scholar
  31. 31.
    Silveira PC, Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R (2009) Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B 95:89–92. doi:10.1016/j.jphotobiol.2009.01.004 CrossRefPubMedGoogle Scholar
  32. 32.
    Albuquerque-Pontes GM, Vieira Rde P, Tomazoni SS, Caires CO, Nemeth V, Vanin AA, Santos LA, Pinto HD, Marcos RL, Bjordal JM, de Carvalho Pde T, Leal-Junior EC (2015) Effect of pre-irradiation with different doses, wavelengths, and application intervals of low-level laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats. Lasers Med Sci 30:59–66. doi:10.1007/s10103-014-1616-2

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Agnelo Neves Alves
    • 1
  • Beatriz Guimarães Ribeiro
    • 1
  • Kristianne Porta Santos Fernandes
    • 2
  • Nadhia Helena Costa Souza
    • 1
  • Lília Alves Rocha
    • 3
  • Fabio Daumas Nunes
    • 4
  • Sandra Kalil Bussadori
    • 1
    • 2
  • Raquel Agnelli Mesquita-Ferrari
    • 1
    • 2
  1. 1.Postgraduate Program in Rehabilitation SciencesUniversidade Nove de Julho—UNINOVESão PauloBrazil
  2. 2.Postgraduate Program in Biophotonics Applied to Health SciencesUniversidade Nove de Julho—UNINOVESão PauloBrazil
  3. 3.Departament of Molecular Pathology, School of DentistryUniversidade de São Paulo—FOUSPSão PauloBrazil
  4. 4.Departament of Oral Pathology, School of DentistryUniversidade de São Paulo—FOUSPSão PauloBrazil

Personalised recommendations