Skip to main content

Advertisement

Log in

Proximal caries lesion detection in primary teeth: does this justify the association of diagnostic methods?

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this clinical study was to evaluate and compare the performance of visual exam with use of the Nyvad criteria (visual examination - (VE)), interproximal radiography (BW), laser fluorescence device (DIAGNOdent Pen-DDPen), and their association in the diagnosis of proximal lesions in primary teeth. For this purpose, 45 children (n = 59 surfaces) of both sexes, aged between 5 and 9 years were selected, who presented healthy primary molars or primary molars with signs suggestive of the presence of caries lesions. The surfaces were clinically evaluated and coded according to the Nyvad criteria and immediately afterwards with the DDPen. Radiographic exam was performed only on the surfaces coded with Nyvad scores 2, 3, 5, or 6. Active caries lesions and/or those with discontinuous surfaces were restored, considering the depth of lesion as reference standard. Sensitivity, specificity, accuracy, and area under ROC curve were calculated for each technique and its associations. Visual exam with Nyvad criteria presented the highest specificity, accuracy, and area under ROC curve values. The DDPen presented the highest sensitivity values. Association with one or more methods resulted in an increase in specificity. The performance of visual, radiographic, and DDpen exams and their associations were good; however, the clinical examination with the Nyvad criteria was sufficient for the diagnosis of interproximal lesions in primary teeth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novaes TF, Matos R, Braga MM, Imparato JC, Raggio DP, Mendes FM (2009) Performance of a pen-type laser fluorescence device and conventional methods in detecting approximal caries lesions in primary teeth—in vivo study. Caries Res 43:36–42. doi:10.1159/000189705

    Article  CAS  PubMed  Google Scholar 

  2. Ekstrand KR, Luna LE, Promisiero L, Cortes A, Cuevas S, Reyes JF, Torres CE, Martignon S (2011) The reliability and accuracy of two methods for proximal caries detection and depth on directly visible proximal surfaces: an in vitro study. Caries Res 45:93–99. doi:10.1159/00032443

    Article  CAS  PubMed  Google Scholar 

  3. Bader JD, Shugars DA, Bonito AJ (2002) A systematic review of the performance of methods for identifying carious lesions. J Public Health Dent 62:201–213

    Article  PubMed  Google Scholar 

  4. Feldens CA, Tovo MF, Kramer PF, Feldens EG, Ferreira SH, Finkler M (2003) An in vitro study of the correlation between clinical and radiographic examinations of proximal carious lesions in primary molars. J Clin Pediatr Dent 27:143–147

    Article  PubMed  Google Scholar 

  5. Nyvad B, Machiulskiene V, Baelum V (1999) Reliability of a new caries diagnostic system differentiating between active and inactive caries lesions. Caries Res 33:252–260. doi:10.1159/000016526

    Article  CAS  PubMed  Google Scholar 

  6. Nyvad B (2004) Diagnosis versus detection of caries. Caries Res 38:192–198. doi:10.1159/000077754

    Article  CAS  PubMed  Google Scholar 

  7. Sellos MC, Soviero VM (2011) Reliability of the Nyvad criteria for caries assessment in primary teeth. Eur J Oral Sci 119(3):225–231. doi:10.1111/j.1600-0722.2011.00827.x

    Article  PubMed  Google Scholar 

  8. Braga MM, Ekstrand KR, Martignon S, Imparato JC, Ricketts DN, Mendes FM (2010) Clinical performance of two visual scoring systems in detecting and assessing activity status of occlusal caries in primary teeth. Caries Res 44:300–308. doi:10.1159/000315616

    Article  CAS  PubMed  Google Scholar 

  9. Braga MM, Mendes FM, Martignon S, Ricketts DN, Ekstrand KR (2009) In vitro comparison of Nyvad’s system and ICDAS-II with Lesion Activity Assessment for evaluation of severity and activity of occlusal caries lesions in primary teeth. Caries Res 43:405–412. doi:10.1159/000239755

    Article  CAS  PubMed  Google Scholar 

  10. Mendes FM, Novaes TF, Matos R, Bittar DG, Piovesan C, Gimenez T, Imparato JC, Raggio DP, Braga MM (2012) Radiographic and laser fluorescence methods have no benefits for detecting caries in primary teeth. Caries Res 46:536–543. doi:10.1159/000341189

    Article  CAS  PubMed  Google Scholar 

  11. Chen J, Qin M, Ma W, Ge L (2012) A clinical study of a laser fluorescence device for the detection of approximal caries in primary molars. Int J Paediatr Dent 22:132–138. doi:10.1111/j.1365-263X.2011.01180.x

    Article  PubMed  Google Scholar 

  12. Celiberti P, Leamari VM, Imparato JC, Braga MM, Mendes FM (2010) In vitro ability of a laser fluorescence device in quantifying approximal caries lesions in primary molars. J Dent 38:666–670. doi:10.1016/j.jdent.2010.05.005

    Article  CAS  PubMed  Google Scholar 

  13. Braga MM, Morais CC, Nakama RC, Leamari VM, Siqueira WL, Mendes FM (2009) In vitro performance of methods of approximal caries detection in primary molars. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:e35–41. doi:10.1016/j.tripleo.2009.05.017

    Article  PubMed  Google Scholar 

  14. Chawla N, Messer LB, Adams GG, Manton DJ (2012) An in vitro comparison of detection methods for approximal carious lesions in primary molars. Caries Res 46:161–169. doi:10.1159/000337099

    Article  CAS  PubMed  Google Scholar 

  15. Braga MM, de Benedetto MS, Imparato JC, Mendes FM (2010) New methodology to assess activity status of occlusal caries in primary teeth using laser fluorescence device. J Biomed Opt 15:047005. doi:10.1117/1.3463007

    Article  PubMed  Google Scholar 

  16. Seppa L, Anttonen V, Niinimaa A, Hausen H (2012) Relationship between laser fluorescence values and visual evaluation of fissure caries in schoolchildren—a field study. Int J Paediatr Dent 22:467–472. doi:10.1111/j.1365-263X.2012.01221.x

    Article  PubMed  Google Scholar 

  17. Julious SA (2009) Estimating samples sizes in clinical trials. CRC

  18. Diniz MB, Rodrigues JA, de Paula AB, Cordeiro R de C (2009) In vivo evaluation of laser fluorescence performance using different cut-off limits for occlusal caries detection. Lasers Med Sci 24:295–300. doi:10.1007/s10103-008-0547-1

  19. Ekstrand KR, Ricketts DN, Kidd EA (1997) Reproducibility and accuracy of three methods for assessment of demineralization depth of the occlusal surface: an in vitro examination. Caries Res 31:224–231. doi:10.1159/000262404

    Article  CAS  PubMed  Google Scholar 

  20. Gordis L (2009) Assessing the validity and reliability of diagnostic and screening tests; in: Epidemiology. Philadelphia, Saunders. 85-108

  21. Weiss EI, Tzohar A, Kaffe I, Littner MM, Gelernter I, Eli I (1996) Interpretation of bitewing radiographs. Part 2. Evaluation of the size of approximal lesions and need for treatment. J Dent 24:385–388. doi:10.1016/0300-5712(95)00112-3

    Article  CAS  PubMed  Google Scholar 

  22. Diniz MB, Rodrigues JA, Neuhaus KW, Cordeiro RC, Lussi A (2010) Influence of examiner’s clinical experience on the reproducibility and accuracy of radiographic examination in detecting occlusal caries. Clin Oral Investig 14:515–523. doi:10.1007/s00784-009-0323-z

    Article  PubMed  Google Scholar 

  23. Maia AM, Karlsson L, Margulis W, Gomes AS (2011) Evaluation of two imaging techniques: near-infrared transillumination and dental radiographs for the detection of early approximal enamel caries. Dentomaxillofac Radiol 40:429–433. doi:10.1259/dmfr/32702114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Braga MM, Mendes FM, Ekstrand KR (2010) Detection activity assessment and diagnosis of dental caries lesions. Dent Clin North Am 54:479–493. doi:10.1016/j.cden.2010.03.006

    Article  PubMed  Google Scholar 

  25. Hintze H (1993) Screening with conventional and digital bite-wing radiography compared to clinical examination alone for caries detection in low-risk children. Caries Res 27:499–504. doi:10.1159/000261588

    Article  CAS  PubMed  Google Scholar 

  26. Ekstrand KR (2004) Improving clinical visual detection—potential for caries clinical trials. J Dent Res 83:C67–71. doi:10.1177/154405910408301S13

    Article  PubMed  Google Scholar 

  27. Bader JD, Shugars DA (2004) A systematic review of the performance of a laser fluorescence device for detecting caries. J Am Dent Assoc 135:1413–1426

    Article  PubMed  Google Scholar 

  28. Mendes FM, Hissadomi M, Imparato JC (2004) Effects of drying time and the presence of plaque on the in vitro performance of laser fluorescence in occlusal caries of primary teeth. Caries Res 38:104–108. doi:10.1159/000075933

    Article  CAS  PubMed  Google Scholar 

  29. Chu CH, Lo EC, You DS (2010) Clinical diagnosis of fissure caries with conventional and laser-induced fluorescence techniques. Lasers Med Sci 25:355–362. doi:10.1007/s10103-009-0655-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kavvadia K, Lagouvardos P, Apostolopoulou D (2012) Combined validity of DIAGNOdent and visual examination for in vitro detection of occlusal caries in primary molars. Lasers Med Sci 27:313–319. doi:10.1007/s10103-010-0877-7

    Article  PubMed  Google Scholar 

  31. Souza-Zaroni WC, Ciccone JC, Souza-Gabriel AE, Ramos RP, Corona SA, Palma-Dibb RG (2006) Validity and reproducibility of different combinations of methods for1111 occlusal caries detection: an in vitro comparison. Caries Res 40:194–201. doi:10.1159/000092225

    Article  CAS  PubMed  Google Scholar 

  32. Valera FB, Pessan JP, Valera RC, Mondelli J, Percinoto C (2008) Comparison of visual inspection, radiographic examination, laser fluorescence and their combinations on treatment decisions for occlusal surfaces. Am J Dent 21:25–29

    PubMed  Google Scholar 

  33. Baelum V (2010) What is an appropriate caries diagnosis? Acta Odontol Scand 68:65–79. doi:10.3109/00016350903530786

    Article  PubMed  Google Scholar 

  34. Newman B, Seow WK, Kazoullis S, Ford D, Holcombe T (2009) Clinical detection of caries in the primary dentition with and without bitewing radiography. Aust Dent J 54:23–30. doi:10.1111/j.1834-7819.2008.01084.x

    Article  CAS  PubMed  Google Scholar 

  35. Coutinho TC, da Rocha Costa C (2014) An in vivo comparison of radiographic and clinical examination with separation for assessment of approximal caries in primary teeth. Eur J Paediatr Dent 15:371–374

    Article  CAS  PubMed  Google Scholar 

  36. Baelum V, Hintze H, Wenzel A, Danielsen B, Nyvad B (2011) Implications of caries diagnostic strategies for clinical management decisions. Community Dent Oral Epidemiol 40:257–266. doi:10.1111/j.1600-0528.2011.00655.x

    Article  PubMed  Google Scholar 

  37. Machiulskiene V, Nyvad B, Baelum V (1999) A comparison of clinical and radiographic caries diagnoses in posterior teeth of 12-year-old Lithuanian children. Caries Res 33:340–348. doi:10.1159/000016532

    Article  CAS  PubMed  Google Scholar 

  38. Smith NJ (1992) Selection criteria for dental radiography. Br Dent J 173:120–121

    Article  CAS  PubMed  Google Scholar 

  39. Pereira AC, Eggertsson H, Martinez-Mier EA, Mialhe FL, Eckert GJ, Zero DT (2009) Validity of caries detection on occlusal surfaces and treatment decisions based on results from multiple caries-detection methods. Eur J Oral Sci 117:51–57. doi:10.1111/j.1600-0722.2008.00586.x

    Article  PubMed  Google Scholar 

  40. Attrill DC, Ashley PF (2001) Occlusal caries detection in primary teeth: a comparison of DIAGNOdent with conventional methods. Br Dent J 190:440–443. doi:10.1038/sj.bdj.4800998

    CAS  PubMed  Google Scholar 

  41. Alberg AJ, Park JW, Hager BW, Brock MV, Diener-West M (2004) The use of "overall accuracy" to evaluate the validity of screening or diagnostic tests. J Gen Intern Med 19:460–465. doi:10.1111/j.1525-1497.2004.30091.x

    Article  PubMed  PubMed Central  Google Scholar 

  42. Neuhaus KW, Rodrigues JA, Hug I, Stich H, Lussi A (2011) Performance of laser fluorescence devices, visual and radiographic examination for the detection of occlusal caries in primary molars. Clin Oral Investig 15:635–641. doi:10.1007/s00784-010-0427-5

    Article  PubMed  Google Scholar 

  43. Trajman A, Luiz RR (2008) McNemar chi2 test revisited: comparing sensitivity and specificity of diagnostic examinations. Scand J Clin Lab Invest 68:77–80. doi:10.1080/00365510701666031

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. L. Cordeiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bussaneli, D.G., Restrepo, M., Boldieri, T. et al. Proximal caries lesion detection in primary teeth: does this justify the association of diagnostic methods?. Lasers Med Sci 30, 2239–2244 (2015). https://doi.org/10.1007/s10103-015-1798-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-015-1798-2

Keywords

Navigation