Advertisement

Lasers in Medical Science

, Volume 30, Issue 4, pp 1281–1287 | Cite as

Light-emitting diode therapy (LEDT) before matches prevents increase in creatine kinase with a light dose response in volleyball players

  • Cleber FerraresiEmail author
  • Ricardo Vinicius dos Santos
  • Guilherme Marques
  • Marcelo Zangrande
  • Roberley Leonaldo
  • Michael R. Hamblin
  • Vanderlei Salvador Bagnato
  • Nivaldo Antonio Parizotto
Original Article

Abstract

Low-level laser (light) therapy (LLLT) has been applied over skeletal muscles before intense exercise (muscular pre-conditioning) in order to reduce fatigue and muscle damage (measured by creatine kinase, CK) in clinical trials. However, previous exercise protocols do not exactly simulate the real muscle demand required in sports. For this reason, the aim of this randomized and double-blind placebo-controlled trial was to investigate whether light-emitting diode therapy (LEDT) applied over the quadriceps femoris muscles, hamstrings, and triceps surae of volleyball players before official matches could prevent muscle damage (CK) with a dose response, establishing a therapeutic window. A professional male volleyball team (12 athletes) was enrolled in this study, and LEDT was applied before 4 matches during a national championship. LEDT used an array of 200 light-emitting diodes (LEDs) arranged in 25 clusters of 4 infrared LEDs (850 ± 20 nm; 130 mW) and 25 clusters of 4 red LEDs (630 ± 10 nm; 80 mW). Athletes were randomized to receive one of four different total doses over each muscle group in a double-blind protocol: 105 J (20 s), 210 J (40 s), 315 J (60 s), and placebo (no light for 30 s). CK in blood was assessed 1 h before and 24 h after each match. LEDT at 210 J avoided significant increases in CK (+10 %; P = 0.993) as well as 315 J (+31 %, P = 0.407). Placebo (0 J) allowed a significant increase in CK (+53 %; P = 0.012) as well as LEDT at 105 J (+59 %; P = 0.001). LEDT prevented significant increases of CK in blood in athletes when applied before official matches with a light dose response of 210–315 J, suggesting athletes might consider applying LEDT before competition.

Keywords

Photobiomodulation LLLT CK Muscle damage Exercise recovery Muscle performance 

Notes

Acknowledgments

Cleber Ferraresi would like to thank FAPESP for his PhD scholarships (numbers 2010/07194-7 and 2012/05919-0). MR Hamblin was supported by US NIH grant R01AI050875.

Ethical statement

This study was conducted in compliance with the Declaration of Helsinki (1964) and its later amendments and also approved by the Research Ethics Committee for Human Studies of the Federal University of Sao Carlos (number protocol approved 217/2012).

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM (2009) Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 374(9705):1897–1908, doi: S0140-6736(09)61522-1CrossRefPubMedGoogle Scholar
  2. 2.
    Enwemeka CS, Parker JC, Dowdy DS, Harkness EE, Sanford LE, Woodruff LD (2004) The efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study. Photomed Laser Surg 22(4):323–329. doi: 10.1089/1549541041797841 CrossRefPubMedGoogle Scholar
  3. 3.
    Tumilty S, Munn J, McDonough S, Hurley DA, Basford JR, Baxter GD (2010) Low level laser treatment of tendinopathy: a systematic review with meta-analysis. Photomed Laser Surg 28(1):3–16. doi: 10.1089/pho.2008.2470 CrossRefPubMedGoogle Scholar
  4. 4.
    Gupta A, Avci P, Sadasivam M, Chandran R, Parizotto N, Vecchio D, de Melo WC, Dai T, Chiang LY, Hamblin MR (2012) Shining light on nanotechnology to help repair and regeneration. Biotechnol Adv. doi: 10.1016/j.biotechadv.2012.08.003 PubMedCentralGoogle Scholar
  5. 5.
    Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49(1):1–17, doi: S1011-1344(98)00219-XCrossRefPubMedGoogle Scholar
  6. 6.
    Karu TI, Pyatibrat LV, Afanasyeva NI (2004) A novel mitochondrial signaling pathway activated by visible-to-near infrared radiation. Photochem Photobiol 80(2):366–372. doi: 10.1562/2004-03-25-RA-123 CrossRefPubMedGoogle Scholar
  7. 7.
    Karu TI, Kolyakov SF (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 23(4):355–361. doi: 10.1089/pho.2005.23.355 CrossRefPubMedGoogle Scholar
  8. 8.
    Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI (2008) Absorption measurements of cell monolayers relevant to mechanisms of laser phototherapy: reduction or oxidation of cytochrome c oxidase under laser radiation at 632.8 nm. Photomed Laser Surg 26(6):593–599. doi: 10.1089/pho.2008.2246 CrossRefPubMedGoogle Scholar
  9. 9.
    Karu TI (2010) Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 62(8):607–610. doi: 10.1002/iub.359 CrossRefPubMedGoogle Scholar
  10. 10.
    Ferraresi C, Hamblin MR, Parizotto NA (2012) Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light. Photonics Lasers Med 1(4):267–286. doi: 10.1515/plm-2012-0032 CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Leal-Junior EC, Vanin AA, Miranda EF, de Carvalho PD, Dal Corso S, Bjordal JM (2013) Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci. doi: 10.1007/s10103-013-1465-4 Google Scholar
  12. 12.
    Vieira WH, Ferraresi C, Perez SE, Baldissera V, Parizotto NA (2012) Effects of low-level laser therapy (808 nm) on isokinetic muscle performance of young women submitted to endurance training: a randomized controlled clinical trial. Lasers Med Sci 27(2):497–504. doi: 10.1007/s10103-011-0984-0 CrossRefPubMedGoogle Scholar
  13. 13.
    Ferraresi C, de Brito OT, de Oliveira ZL, de Menezes Reiff RB, Baldissera V, de Andrade Perez SE, Matheucci Junior E, Parizotto NA (2011) Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci 26(3):349–358. doi: 10.1007/s10103-010-0855-0 CrossRefPubMedGoogle Scholar
  14. 14.
    Hornery DJ, Farrow D, Mujika I, Young W (2007) An integrated physiological and performance profile of professional tennis. Br J Sports Med 41(8):531–536. doi: 10.1136/bjsm.2006.031351, discussion 536CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Lopes-Martins RA, Marcos RL, Leonardo PS, Prianti AC Jr, Muscara MN, Aimbire F, Frigo L, Iversen VV, Bjordal JM (2006) Effect of low-level laser (Ga-Al-As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J Appl Physiol 101(1):283–288. doi: 10.1152/japplphysiol.01318.2005 CrossRefPubMedGoogle Scholar
  16. 16.
    Liu XG, Zhou YJ, Liu TC, Yuan JQ (2009) Effects of low-level laser irradiation on rat skeletal muscle injury after eccentric exercise. Photomed Laser Surg 27(6):863–869. doi: 10.1089/pho.2008.2443 CrossRefPubMedGoogle Scholar
  17. 17.
    Sussai DA, Carvalho Pde T, Dourado DM, Belchior AC, dos Reis FA, Pereira DM (2010) Low-level laser therapy attenuates creatine kinase levels and apoptosis during forced swimming in rats. Lasers Med Sci 25(1):115–120. doi: 10.1007/s10103-009-0697-9 CrossRefPubMedGoogle Scholar
  18. 18.
    Leal Junior EC, Lopes-Martins RA, de Almeida P, Ramos L, Iversen VV, Bjordal JM (2010) Effect of low-level laser therapy (GaAs 904 nm) in skeletal muscle fatigue and biochemical markers of muscle damage in rats. Eur J Appl Physiol 108(6):1083–1088. doi: 10.1007/s00421-009-1321-1 CrossRefPubMedGoogle Scholar
  19. 19.
    de Almeida P, Lopes-Martins RA, Tomazoni SS, Silva JA Jr, de Carvalho PT, Bjordal JM, Leal Junior EC (2011) Low-level laser therapy improves skeletal muscle performance, decreases skeletal muscle damage and modulates mRNA expression of COX-1 and COX-2 in a dose-dependent manner. Photochem Photobiol 87(5):1159–1163. doi: 10.1111/j.1751-1097.2011.00968.x CrossRefPubMedGoogle Scholar
  20. 20.
    Santos LA, Marcos RL, Tomazoni SS, Vanin AA, Antonialli FC, Grandinetti Vdos S, Albuquerque-Pontes GM, de Paiva PR, Lopes-Martins RA, de Carvalho PT, Bjordal JM, Leal-Junior EC (2014) Effects of pre-irradiation of low-level laser therapy with different doses and wavelengths in skeletal muscle performance, fatigue, and skeletal muscle damage induced by tetanic contractions in rats. Lasers Med Sci 29(5):1617–1626. doi: 10.1007/s10103-014-1560-1 CrossRefPubMedGoogle Scholar
  21. 21.
    Felismino AS, Costa EC, Aoki MS, Ferraresi C, de Araujo Moura Lemos TM, de Brito Vieira WH (2014) Effect of low-level laser therapy (808 nm) on markers of muscle damage: a randomized double-blind placebo-controlled trial. Lasers Med Sci 29(3):933–938. doi: 10.1007/s10103-013-1430-2 PubMedGoogle Scholar
  22. 22.
    Leal Junior EC, Lopes-Martins RA, Frigo L, De Marchi T, Rossi RP, de Godoi V, Tomazoni SS, Silva DP, Basso M, Filho PL, de Valls CF, Iversen VV, Bjordal JM (2010) Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports Phys Ther 40(8):524–532. doi: 10.2519/jospt.2010.3294 CrossRefPubMedGoogle Scholar
  23. 23.
    Leal Junior EC, Lopes-Martins RA, Baroni BM, De Marchi T, Taufer D, Manfro DS, Rech M, Danna V, Grosselli D, Generosi RA, Marcos RL, Ramos L, Bjordal JM (2009) Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers Med Sci 24(6):857–863. doi: 10.1007/s10103-008-0633-4 CrossRefPubMedGoogle Scholar
  24. 24.
    Baroni BM, Leal Junior EC, De Marchi T, Lopes AL, Salvador M, Vaz MA (2010) Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur J Appl Physiol 110(4):789–796. doi: 10.1007/s00421-010-1562-z CrossRefPubMedGoogle Scholar
  25. 25.
    Leal Junior EC, Lopes-Martins RA, Rossi RP, De Marchi T, Baroni BM, de Godoi V, Marcos RL, Ramos L, Bjordal JM (2009) Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med 41(8):572–577. doi: 10.1002/lsm.20810 CrossRefPubMedGoogle Scholar
  26. 26.
    Leal Junior EC, Lopes-Martins RA, Baroni BM, De Marchi T, Rossi RP, Grosselli D, Generosi RA, de Godoi V, Basso M, Mancalossi JL, Bjordal JM (2009) Comparison between single-diode low-level laser therapy (LLLT) and LED multi-diode (cluster) therapy (LEDT) applications before high-intensity exercise. Photomed Laser Surg 27(4):617–623. doi: 10.1089/pho.2008.2350 CrossRefPubMedGoogle Scholar
  27. 27.
    Baroni BM, Leal Junior EC, Geremia JM, Diefenthaeler F, Vaz MA (2010) Effect of light-emitting diodes therapy (LEDT) on knee extensor muscle fatigue. Photomed Laser Surg 28(5):653–658. doi: 10.1089/pho.2009.2688 CrossRefPubMedGoogle Scholar
  28. 28.
    Leal Junior EC, de Godoi V, Mancalossi JL, Rossi RP, De Marchi T, Parente M, Grosselli D, Generosi RA, Basso M, Frigo L, Tomazoni SS, Bjordal JM, Lopes-Martins RA (2011) Comparison between cold water immersion therapy (CWIT) and light emitting diode therapy (LEDT) in short-term skeletal muscle recovery after high-intensity exercise in athletes—preliminary results. Lasers Med Sci 26(4):493–501. doi: 10.1007/s10103-010-0866-x CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Antonialli FC, De Marchi T, Tomazoni SS, Vanin AA, Dos Santos Grandinetti V, de Paiva PR, Pinto HD, Miranda EF, de Tarso Camillo de Carvalho P, Leal-Junior EC (2014) Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers Med Sci. doi: 10.1007/s10103-014-1611-7 Google Scholar
  30. 30.
    Borsa PA, Larkin KA, True JM (2013) Does phototherapy enhance skeletal muscle contractile function and postexercise recovery? A systematic review. J Athl Train 48(1):57–67. doi: 10.4085/1062-6050-48.1.12 PubMedCentralPubMedGoogle Scholar
  31. 31.
    Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose–Response 7(4):358–383. doi: 10.2203/dose-response.09-027.Hamblin PubMedCentralPubMedGoogle Scholar
  32. 32.
    Passarella S, Casamassima E, Molinari S, Pastore D, Quagliariello E, Catalano IM, Cingolani A (1984) Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium-neon laser. FEBS Lett 175(1):95–99CrossRefPubMedGoogle Scholar
  33. 33.
    Karu T, Pyatibrat L, Kalendo G (1995) Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol B 27(3):219–223CrossRefPubMedGoogle Scholar
  34. 34.
    Ferraresi C, Beltrame T, Fabrizzi F, Nascimento ES, Karsten M, Francisco CO, Borghi-Silva A, Catai AM, Cardoso DR, Ferreira AG, Hamblin MR, Bagnato VS, Parizotto NA (2015) Muscular pre-conditioning using light-emitting diode therapy (LEDT) for high-intensity exercise: a randomized double-blind placebo-controlled trial with a single elite runner. Physiother Theory Pract:1–8. doi:  10.3109/09593985.2014.1003118
  35. 35.
    Camargo MZ, Siqueira CP, Preti MC, Nakamura FY, de Lima FM, Dias IF, Toginho Filho Dde O, Ramos Sde P (2012) Effects of light emitting diode (LED) therapy and cold water immersion therapy on exercise-induced muscle damage in rats. Lasers Med Sci 27(5):1051–1058. doi: 10.1007/s10103-011-1039-2 CrossRefPubMedGoogle Scholar
  36. 36.
    da Costa Santos VB, de Paula RS, Milanez VF, Correa JC, de Andrade Alves RI, Dias IF, Nakamura FY (2014) LED therapy or cryotherapy between exercise intervals in Wistar rats: anti-inflammatory and ergogenic effects. Lasers Med Sci 29(2):599–605. doi: 10.1007/s10103-013-1371-9 CrossRefPubMedGoogle Scholar
  37. 37.
    Enwemeka CS (2005) Light is light. Photomed Laser Surg 23(2):159–160. doi: 10.1089/pho.2005.23.159 CrossRefPubMedGoogle Scholar
  38. 38.
    Dos Reis FA, da Silva BA, Laraia EM, de Melo RM, Silva PH, Leal-Junior EC, de Carvalho PT (2014) Effects of pre- or post-exercise low-level laser therapy (830 nm) on skeletal muscle fatigue and biochemical markers of recovery in humans: double-blind placebo-controlled trial. Photomed Laser Surg 32(2):106–112. doi: 10.1089/pho.2013.3617 CrossRefPubMedGoogle Scholar
  39. 39.
    Karu T (2013) Is it time to consider photobiomodulation as a drug equivalent? Photomed Laser Surg 31(5):189–191. doi: 10.1089/pho.2013.3510 CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    De Marchi T, Leal Junior EC, Bortoli C, Tomazoni SS, Lopes-Martins RA, Salvador M (2012) Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci 27(1):231–236. doi: 10.1007/s10103-011-0955-5 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Cleber Ferraresi
    • 1
    • 2
    • 3
    Email author
  • Ricardo Vinicius dos Santos
    • 4
  • Guilherme Marques
    • 4
  • Marcelo Zangrande
    • 4
  • Roberley Leonaldo
    • 4
  • Michael R. Hamblin
    • 5
    • 6
    • 7
  • Vanderlei Salvador Bagnato
    • 2
    • 3
  • Nivaldo Antonio Parizotto
    • 1
    • 2
  1. 1.Laboratory of Electrothermophototherapy, Department of Physical TherapyFederal University of Sao CarlosSao CarlosBrazil
  2. 2.Post-Graduation Program in BiotechnologyFederal University of Sao CarlosSao CarlosBrazil
  3. 3.Optics Group, Physics Institute of Sao CarlosUniversity of São PauloSao CarlosBrazil
  4. 4.Sao Bernardo Volleyball TeamSao Bernardo do CampoBrazil
  5. 5.Wellman Center for PhotomedicineMassachusetts General HospitalBostonUSA
  6. 6.Department of DermatologyHarvard Medical SchoolBostonUSA
  7. 7.Harvard-MIT Division of Health Science and TechnologyCambridgeUSA

Personalised recommendations