Advertisement

Lasers in Medical Science

, Volume 30, Issue 4, pp 1259–1267 | Cite as

Time response of increases in ATP and muscle resistance to fatigue after low-level laser (light) therapy (LLLT) in mice

  • Cleber Ferraresi
  • Marcelo Victor Pires de Sousa
  • Ying-Ying Huang
  • Vanderlei Salvador Bagnato
  • Nivaldo Antonio Parizotto
  • Michael R. Hamblin
Original Article

Abstract

Recently, low-level laser (light) therapy has been used to increase muscle performance in intense exercises. However, there is a lack of understanding of the time response of muscles to light therapy. The first purpose of this study was to determine the time response for light-emitting diode therapy (LEDT)-mediated increase in adenosine triphosphate (ATP) in the soleus and gastrocnemius muscles in mice. Second purpose was to test whether LEDT can increase the resistance of muscles to fatigue during intense exercise. Fifty male Balb/c mice were randomly allocated into two equal groups: LEDT-ATP and LEDT-fatigue. Both groups were subdivided into five equal subgroups: LEDT-sham, LEDT-5 min, LEDT-3 h, LEDT-6 h, and LEDT-24 h. Each subgroup was analyzed for muscle ATP content or fatigue at specified time after LEDT. The fatigue test was performed by mice repeatedly climbing an inclined ladder bearing a load of 150 % of body weight until exhaustion. LEDT used a cluster of LEDs with 20 red (630 ± 10 nm, 25 mW) and 20 infrared (850 ± 20 nm, 50 mW) delivering 80 mW/cm2 for 90 s (7.2 J/cm2) applied to legs, gluteus, and lower back muscles. LEDT-6 h was the subgroup with the highest ATP content in soleus and gastrocnemius compared to all subgroups (P < 0.001). In addition, mice in LEDT-6 h group performed more repetitions in the fatigue test (P < 0.001) compared to all subgroups: LEDT-sham and LEDT-5 min (~600 %), LEDT-3 h (~200 %), and LEDT-24 h (~300 %). A high correlation between the fatigue test repetitions and the ATP content in soleus (r = 0.84) and gastrocnemius (r = 0.94) muscles was observed. LEDT increased ATP content in muscles and fatigue resistance in mice with a peak at 6 h. Although the time response in mice and humans is not the same, athletes might consider applying LEDT at 6 h before competition.

Keywords

Light-emitting diode therapy Muscle ATP content Photobiomodulation Resistance to exercise fatigue Time response 

Notes

Acknowledgments

We would like to thank Andrea L. Brissette for your assistance with multiple roles including purchase of reagents. Cleber Ferraresi would like to thank FAPESP for his PhD scholarships (numbers 2010/07194-7 and 2012/05919-0). Michael R. Hamblin was supported by US NIH grant R01AI050875.

References

  1. 1.
    Huang YY, Sharma SK, Carroll J, Hamblin MR (2011) Biphasic dose response in low level light therapy—an update. Dose Response 9(4):602–618. doi: 10.2203/dose-response.11-009.Hamblin CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM (2009) Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 374(9705):1897–1908. doi: 10.1016/S0140-6736(09)61522-1 CrossRefPubMedGoogle Scholar
  3. 3.
    Enwemeka CS, Parker JC, Dowdy DS, Harkness EE, Sanford LE, Woodruff LD (2004) The efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study. Photomed Laser Surg 22(4):323–329. doi: 10.1089/1549541041797841 CrossRefPubMedGoogle Scholar
  4. 4.
    Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49(1):1–17. doi: 10.1016/S1011-1344(98)00219-X CrossRefPubMedGoogle Scholar
  5. 5.
    Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose Response 7(4):358–383. doi: 10.2203/dose-response.09-027.Hamblin CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Vladimirov YA, Osipov AN, Klebanov GI (2004) Photobiological principles of therapeutic applications of laser radiation. Biochemistry (Mosc) 69(1):81–90CrossRefGoogle Scholar
  7. 7.
    Bakeeva LE, Manteifel VM, Rodichev EB, Karu TI (1993) Formation of gigantic mitochondria in human blood lymphocytes under the effect of an He-Ne laser. Mol Biol (Mosk) 27(3):608–617Google Scholar
  8. 8.
    Karu TI, Pyatibrat LV, Afanasyeva NI (2004) A novel mitochondrial signaling pathway activated by visible-to-near infrared radiation. Photochem Photobiol 80(2):366–372. doi: 10.1562/2004-03-25-RA-1232004-03-25-RA-123 CrossRefPubMedGoogle Scholar
  9. 9.
    Karu TI, Kolyakov SF (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 23(4):355–361. doi: 10.1089/pho.2005.23.355 CrossRefPubMedGoogle Scholar
  10. 10.
    Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI (2008) Absorption measurements of cell monolayers relevant to mechanisms of laser phototherapy: reduction or oxidation of cytochrome c oxidase under laser radiation at 632.8 nm. Photomed Laser Surg 26(6):593–599. doi: 10.1089/pho.2008.2246 CrossRefPubMedGoogle Scholar
  11. 11.
    Karu TI (2010) Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 62(8):607–610. doi: 10.1002/iub.359 CrossRefPubMedGoogle Scholar
  12. 12.
    Hayworth CR, Rojas JC, Padilla E, Holmes GM, Sheridan EC, Gonzalez-Lima F (2010) In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle. Photochem Photobiol 86(3):673–680. doi: 10.1111/j.1751-1097.2010.00732.x CrossRefPubMedGoogle Scholar
  13. 13.
    Karu T, Pyatibrat L, Kalendo G (1995) Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol B 27(3):219–223CrossRefPubMedGoogle Scholar
  14. 14.
    Passarella S, Casamassima E, Molinari S, Pastore D, Quagliariello E, Catalano IM, Cingolani A (1984) Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium-neon laser. FEBS Lett 175(1):95–99CrossRefPubMedGoogle Scholar
  15. 15.
    Ferraresi C, Hamblin MR, Parizotto NA (2012) Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light. Photonics Lasers Med 1(4):267–286. doi: 10.1515/plm-2012-0032 CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Borsa PA, Larkin KA, True JM (2013) Does phototherapy enhance skeletal muscle contractile function and postexercise recovery? A systematic review. J Athl Train 48(1):57–67. doi: 10.4085/1062-6050-48.1.12 PubMedCentralPubMedGoogle Scholar
  17. 17.
    Leal-Junior EC, Vanin AA, Miranda EF, de Carvalho PD, Dal Corso S, Bjordal JM (2013) Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci. doi: 10.1007/s10103-013-1465-4 Google Scholar
  18. 18.
    Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88(1):287–332. doi: 10.1152/physrev.00015.2007 CrossRefPubMedGoogle Scholar
  19. 19.
    Hoffman JR, Kraemer WJ, Bhasin S, Storer T, Ratamess NA, Haff GG, Willoughby DS, Rogol AD (2009) Position stand on androgen and human growth hormone use. J Strength Cond Res 23(5 Suppl):S1–S59. doi: 10.1519/JSC.0b013e31819df2e6 CrossRefPubMedGoogle Scholar
  20. 20.
    Leal Junior EC, Lopes-Martins RA, Dalan F, Ferrari M, Sbabo FM, Generosi RA, Baroni BM, Penna SC, Iversen VV, Bjordal JM (2008) Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg 26(5):419–424. doi: 10.1089/pho.2007.2160 CrossRefPubMedGoogle Scholar
  21. 21.
    Leal Junior EC, Lopes-Martins RA, Vanin AA, Baroni BM, Grosselli D, De Marchi T, Iversen VV, Bjordal JM (2009) Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci 24(3):425–431. doi: 10.1007/s10103-008-0592-9 CrossRefPubMedGoogle Scholar
  22. 22.
    Leal Junior EC, Lopes-Martins RA, Frigo L, De Marchi T, Rossi RP, de Godoi V, Tomazoni SS, Silva DP, Basso M, Filho PL, de Valls Corsetti F, Iversen VV, Bjordal JM (2010) Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports Phys Ther 40(8):524–532. doi: 10.2519/jospt.2010.3294 CrossRefPubMedGoogle Scholar
  23. 23.
    Lee S, Barton ER, Sweeney HL (1985) Farrar RP (2004) Viral expression of insulin-like growth factor-I enhances muscle hypertrophy in resistance-trained rats. J Appl Physiol 96(3):1097–1104. doi: 10.1152/japplphysiol.00479.2003 CrossRefGoogle Scholar
  24. 24.
    Ferraresi C, Parizotto NA, Pires de Sousa MV, Kaippert B, Huang Y-Y, Koiso T, Bagnato VS, Hamblin MR (2014) Light-emitting diode therapy in exercise-trained mice increases muscle performance, cytochrome c oxidase activity, ATP and cell proliferation. J Biophoton 9999 (9999):n/a-n/a. doi: 10.1002/jbio.201400087
  25. 25.
    Khan HA (2003) Bioluminometric assay of ATP in mouse brain: determinant factors for enhanced test sensitivity. J Biosci 28(4):379–382CrossRefPubMedGoogle Scholar
  26. 26.
    Weber J, Lamb D (1970) Statistics and research in physical education. C. V. Mosby Co., Saint LouisGoogle Scholar
  27. 27.
    de Almeida P, Lopes-Martins RA, Tomazoni SS, Silva JA Jr, de Carvalho PT, Bjordal JM, Leal Junior EC (2011) Low-level laser therapy improves skeletal muscle performance, decreases skeletal muscle damage and modulates mRNA expression of COX-1 and COX-2 in a dose-dependent manner. Photochem Photobiol 87(5):1159–1163. doi: 10.1111/j.1751-1097.2011.00968.x CrossRefPubMedGoogle Scholar
  28. 28.
    Leal Junior EC, Lopes-Martins RA, de Almeida P, Ramos L, Iversen VV, Bjordal JM (2010) Effect of low-level laser therapy (GaAs 904 nm) in skeletal muscle fatigue and biochemical markers of muscle damage in rats. Eur J Appl Physiol 108(6):1083–1088. doi: 10.1007/s00421-009-1321-1 CrossRefPubMedGoogle Scholar
  29. 29.
    Schuenke MD, Kopchick JJ, Hikida RS, Kraemer WJ, Staron RS (2008) Effects of growth hormone overexpression vs. growth hormone receptor gene disruption on mouse hindlimb muscle fiber type composition. Growth Hormon IGF Res 18(6):479–486. doi: 10.1016/j.ghir.2008.04.003 CrossRefGoogle Scholar
  30. 30.
    Vieira WH, Ferraresi C, Perez SE, Baldissera V, Parizotto NA (2012) Effects of low-level laser therapy (808 nm) on isokinetic muscle performance of young women submitted to endurance training: a randomized controlled clinical trial. Lasers Med Sci 27(2):497–504. doi: 10.1007/s10103-011-0984-0 CrossRefPubMedGoogle Scholar
  31. 31.
    Ferraresi C, de Brito OT, de Oliveira ZL, de Menezes Reiff RB, Baldissera V, de Andrade Perez SE, Matheucci Junior E, Parizotto NA (2011) Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci 26(3):349–358. doi: 10.1007/s10103-010-0855-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Cleber Ferraresi
    • 1
    • 2
    • 3
    • 4
  • Marcelo Victor Pires de Sousa
    • 4
    • 5
  • Ying-Ying Huang
    • 4
    • 6
  • Vanderlei Salvador Bagnato
    • 3
  • Nivaldo Antonio Parizotto
    • 1
    • 2
  • Michael R. Hamblin
    • 4
    • 6
    • 7
  1. 1.Laboratory of Electrothermophototherapy, Department of Physical TherapyFederal University of São CarlosSão PauloBrazil
  2. 2.Post-Graduation Program in BiotechnologyFederal University of Sao CarlosSão PauloBrazil
  3. 3.Physics Institute of Sao CarlosUniversity of Sao PauloSao CarlosBrazil
  4. 4.Wellman Center for PhotomedicineMassachusetts General HospitalBostonUSA
  5. 5.Laboratory of Radiation Dosimetry and Medical Physics, Institute of PhysicsSao Paulo UniversitySão PauloBrazil
  6. 6.Department of DermatologyHarvard Medical SchoolBostonUSA
  7. 7.Harvard-MIT Division of Health Science and TechnologyCambridgeUSA

Personalised recommendations