Advertisement

Lasers in Medical Science

, Volume 30, Issue 3, pp 1061–1068 | Cite as

Effect of low-level laser therapy on bone repair: a randomized controlled experimental study

  • Valéria Regina Gonzalez Sella
  • Fernando Russo Costa do Bomfim
  • Paula Carolina Dias Machado
  • Maria José Misael da Silva Morsoleto
  • Milton Chohfi
  • Helio Plapler
Original Article

Abstract

The aim of this study was to investigate the effect of low-level laser therapy (LLLT) on bone repair in femoral fractures. Sixty adult Wistar rats were randomly assigned into one of two groups: group A (ostectomy + LLLT) or group B (ostectomy + sham laser). An experimental model of complete bone fracture was surgically created by removing a 2-mm fragment from the middle third of the femoral shaft. Data were analyzed on days 8, 13, and 18 after the fracture (subgroups 1, 2, and 3). Samples were assessed for changes in inflammatory infiltration; trabecular bone matrix, periosteal, and new bone formations; and changes in the expression of particular osteogenic-related proteins (osteocalcin, osteopontin, and osteonectin). Microscopic analysis revealed a significant decrease in inflammatory infiltration, intense trabecular bone matrix and periosteal formation, and an increase in newly formed bone after laser irradiation. We also found an increase in the expression of bone matrix proteins with LLLT, with a significant difference measured for osteocalcin in the LLLT group at day 8 (p = 0.007). We show that LLLT plays an important role in augmenting bone tissue formation, which is relevant to fracture healing. LLLT may therefore be indicated as an adjunct therapeutic tool in clinical practice for the treatment or recovery of nonunion injuries.

Keywords

Bone remodeling Femoral fracture Low-level laser therapy 

Notes

Ethical approval

Animal manipulation was performed in accordance with the animal testing guide (in agreement with the Brazilian Legislation no. 11.794/2008 for Procedures for the Scientific Use of Animals). This randomized controlled experimental study was previously approved by the Research Ethics Committee of Federal University of São Paulo under no. 1101/09.

Conflict of interest

All authors have no conflicts of interest.

References

  1. 1.
    Oliveira AM, Castro-Silva II, Fernandes GVO, Melo BR, Alves ATNN, Júnior AS, Lima ICB, Granjeiro JM (2014) Effectiveness and acceleration os bone repair in critical-sized rat calvarial defects using low-level laser therapy. Laser Surg Med 46(1):61–67CrossRefGoogle Scholar
  2. 2.
    Carvalho P, Silva I, Reis F, Belchior A, Facco G, Guimarães R, Fernandes G, Denadai A (2006) Effect of 650 nm low-power laser on bone morphogenetic protein in bone defects induced in rat femors. Acta Cir Bras 21(suplem 4):63–68CrossRefGoogle Scholar
  3. 3.
    Claes L, Willie B (2007) The enhancement of bone regeneration by ultrasound. Prog Biophys Mol Biol 93(1–3):384–398CrossRefPubMedGoogle Scholar
  4. 4.
    Haal BK (2005) Bones and cartilage: developmental and evolutionary skeletal biology. Academic, San Diego, CAGoogle Scholar
  5. 5.
    Shakouri SK, Soleimanpour J, Salekzamani Y, Oskuie M (2010) Effect of low-level laser therapy on the fracture healing process. Lasers Med Sci 25(1):73–77. doi: 10.1007/s10103-009-0670-7 CrossRefGoogle Scholar
  6. 6.
    Childs S (2003) Stimulators of bone healing. Biologic and biomechanical. Orthop Nurs 22(6):421–428CrossRefPubMedGoogle Scholar
  7. 7.
    Giannunzio GA, Speerli RC, Guglielmotti MB (2008) Electrical field effect on peri-implant osteogenesis: a histologic and histomorphometric study. Implant Dent 17:118–126CrossRefPubMedGoogle Scholar
  8. 8.
    Ueda Y, Shimizu N (2003) Effects of pulse frequency of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells. J Clin Laser Med Surg 21(5):271–277. doi: 10.1089/104454703322564479 CrossRefPubMedGoogle Scholar
  9. 9.
    Hawkins-Evans D, Abrahamse H (2008) Efficacy of three different laser wavelengths for in vitro wound healing. Photodermatol Photoimmunol Photomed 24:199–210CrossRefGoogle Scholar
  10. 10.
    Marchesano L (2005) Comportamento de marcadores séricos de formação e reabsorção óssea após enxerto autógeno em fissure alveolar congênita: sem e com plasma rico em plaquetas. Doctoral, Universidade Estadual Paulista “Júlio de Mesquita Filho”, AraraquaraGoogle Scholar
  11. 11.
    Santa Cruz Biotechnology I (2010) osteocalcin (FL-100): sc-30044Google Scholar
  12. 12.
    Santa Cruz Biotechnology I (2010) Osteopontin (LFMb-14): sc-73631Google Scholar
  13. 13.
    Santa Cruz Biotechnology I (2010) SPARC (AON-5031): sc-73472 instructions guideGoogle Scholar
  14. 14.
    Suvinil catalog - brick (2014)Google Scholar
  15. 15.
    Matkowskyj KA, Schonfeld D, Benya RV (2000) Quantitative immunohistochemistry by measuring cumulative signal strength using commercially available software photoshop and matlab. J Histochem Cytochem 48(2):303–311CrossRefPubMedGoogle Scholar
  16. 16.
    Pham N, Morrison A, Schwock J, Aviel-Ronen S, Iakovlev V, Tsao M, Ho J, DW Hedley (2007) Quantitative image analysis of immunohistochemical stains using a CMYK color model. Diagn Pathol:2–8Google Scholar
  17. 17.
    Martins GL, Puricelli E, Baraldi CE, Ponzoni D (2010) Bone healing after Bur and Er:YAG laser ostectomies. JOMS 69(4):1214–1220. doi: 10.1016/j.joms.2010.02.029 Google Scholar
  18. 18.
    Drosse I, Volkmer E, Seitz S, Seitz H, Penzkofer R, Zahn K, Matis U, Mutschler W, Augat P, Schieker M (2008) Validation of a femoral critical size defect model for orthotopic evaluation of bone healing: a biomechanical, veterinary and trauma surgical perspective. Tissue Eng Part C Methods 14(1):79–88. doi: 10.1089/tec.2007.0234 CrossRefPubMedGoogle Scholar
  19. 19.
    Huang Y-Y, Chen AC-H, Hamblin M (2009) Low-level laser therapy: an emerging clinical paradigm.3. doi: 10.1117/2.1200906.1669
  20. 20.
    Silva Júnior A, Pinheiro A, Weismann MOR, Ramalho L, Nicolau R (2002) Computerized morphometric assessment os the effect os low level laser therapy on bone repair: an experimental study. J Clin Laser Med Surg 20(2):83–87CrossRefPubMedGoogle Scholar
  21. 21.
    Abramoff MMF, Pereira MD, Alves MTS, Segreto RA, Guilherme A, Ferreira LM (2014) Low-level laser therapy on bone repair of rat tibiae exposed to ionizing radiation. Photomed Laser Surg 32(11):618–626. doi: 10.1089/pho.2013.3692 CrossRefGoogle Scholar
  22. 22.
    Hudson DE, Hudson DO, Wininger JM, Richardson BD (2013) Penetration of laser light at 808 and 980 nm in bovine tissue samples. Photomed Laser Surg 31(4):163–168. doi: 10.1089/pho.2012.3284 CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Garavello-Freitas I, Baranauskas V, Joazeiro P, Padovani C, Pai-Silva MD, Cruz-Hofling M (2003) Low-power laser irradiation improves histomorphometrical parameters and bone matrix organization during tibia wound healing in rats. J Photochem Photobiol B Biol 70(2):81–89CrossRefGoogle Scholar
  24. 24.
    Freitas I, Baranauskas V, Cruz-Hofling M (2000) Laser effects on osteogenesis. Appl Surf Sci 154–155:548–554CrossRefGoogle Scholar
  25. 25.
    Favaro-Pipi E, Ribeiro DA, Ribeiro JU, Bossini P, Oliveira P, Parizotto NA, Tim C, de Araujo HS, Renno AC (2011) Low-level laser therapy induces differential expression of osteogenic genes during bone repair in rats. Photomed Laser Surg 29(5):311–317. doi: 10.1089/pho.2010.2841 CrossRefPubMedGoogle Scholar
  26. 26.
    Barushka O, Yaakobi T, Oron U (1995) Effect of low-energy laser (He-Ne) irradiation on the process of bone repair in the rat tibia. Bone 16(1):47–55PubMedGoogle Scholar
  27. 27.
    Friesen LR, Cobb CM, Rapley JW, Forgas-Brockman L, Spencer P (1999) Laser irradiation of bone: II. Healing response following treatment by CO2 and Nd:YAG lasers. J Periodont 70:75–83CrossRefPubMedGoogle Scholar
  28. 28.
    Guimarães KB (2006) Fotoengenharia do processo de reparo ósseo induzido pela laserterapia de baixa potência (GaAlAs): estudo em fêmures de ratos. Faculdade de Odontologia, PUCRS, Porto AlegreGoogle Scholar
  29. 29.
    Giordano V, Knackfuss IG, Gomes RC, Giordano M, Mendonça RG, Coutynho F (2001) Influência do Laser de baixa energia no processo de consolidação da fratura de tibia: estudo experimental em ratos (Influency of low-level laser on healing process of tibial fracture: experimental study in rats). Rev Bras Ortop 36(5):174–178Google Scholar
  30. 30.
    Noda M, Denhardt D (2008) Osteopontin. In: AP I (ed) Principles of bone biology, 3rd edn, pp 351–366Google Scholar
  31. 31.
    Thurner PJ, Chen CG, Ionova-Martin S, Sun L, Harman A, Porter A, Ager JW, Ritchie RO, Alliston T (2010) Osteopontin deficiency increases bone fragility but preserves bone mass. Bone 46:1564–1573. doi: 10.1016/j.bone.2010.02.014 CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Abrahamse H (2012) Regenerative medicine, stem cells, and low-level laser therapy: future directives. Photomed Laser Surg 30(12):681–682. doi: 10.1089/pho.2012.9881 CrossRefPubMedGoogle Scholar
  33. 33.
    Irie K, Zalzal S, Ozawa H, McKee MD, Nanci A (1998) Morphological and immunocytochemical characterization of primary osteogenic cell cultures derived from fetal rat cranial tissue. Anat Rec 252(4):554–567. doi: 10.1002/(SICI)1097-0185(199812)252:4<554::AID-AR6>3.0.CO;2-2 CrossRefPubMedGoogle Scholar
  34. 34.
    Lirani-Galvão A, Jorgetti V, Silva OL (2006) Comparative study of how low-level laser therapy and low-intensity pulsed ultrasound affect bone repair in rats. Photomed Laser Surg 24(6):735–740. doi: 10.1089/pho.2006.24.735 CrossRefPubMedGoogle Scholar
  35. 35.
    Tajali SB, MacDermid JC, Houghton P, Grewal R (2010) Effects of low power laser irradiation on bone healing in animals: a meta-analysis. J Orthop Surg Res 5:1. doi: 10.1186/1749-799X-5-1 CrossRefGoogle Scholar
  36. 36.
    Park J, Kang K (2012) Effect of 980-nm GaAlAs diode laser irradiation on healing of extraction sockets in streptozotocin-induced diabetic rats: a pilot study. Lasers Med Sci 27:223–230CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Valéria Regina Gonzalez Sella
    • 1
    • 3
  • Fernando Russo Costa do Bomfim
    • 1
  • Paula Carolina Dias Machado
    • 1
  • Maria José Misael da Silva Morsoleto
    • 1
  • Milton Chohfi
    • 2
  • Helio Plapler
    • 1
  1. 1.Department of Surgery, Division of Operative Technique and Experimental SurgeryUniversidade Federal de São Paulo [Federal University of São Paulo] – UNIFESPSão PauloBrazil
  2. 2.Department of OrthopedicsUniversidade Federal de São Paulo [Federal University of São Paulo] – UNIFESPSão PauloBrazil
  3. 3.São PauloBrazil

Personalised recommendations