Lasers in Medical Science

, Volume 30, Issue 7, pp 1873–1879 | Cite as

Assessment of a new infrared laser transillumination technology (808 nm) for the detection of occlusal caries—an in vitro study

  • D. G. Bussaneli
  • M. Restrepo
  • T. Boldieri
  • H. Pretel
  • M. W. Mancini
  • L. Santos-Pinto
  • R. C. L. CordeiroEmail author
Original Article


This study aimed to evaluate in vitro performance of near-infrared laser transillumination (NIR-LTI) for detecting early occlusal caries in permanent teeth and compare it with quantitative light-induced fluorescence (QLF), DIAGNOdent Pen (DDPen), and conventional radiography (CR). Ninety-four occlusal surfaces presenting International Caries Detection and Assessment System (ICDAS) scores ranging from 0 to 3 were selected. For the NIR-LTI examination, images were captured using a prototype, which consists of a laser beam (808 nm) and an infrared CCD camera. One occlusal site on each tooth was assessed twice by two examiners. The teeth were prepared histologically and assessed for the presence of early caries. The intraexaminer correlation showed no difference between the NIR-LTI, DDPen, and QLF analytical methods, but all these methods differed from CR. Interexaminer reproducibility was moderate for NIR-LTI, which showed sensitivity (0.68), specificity (0.85), accuracy (0.73), and area under the receiver-operating characteristic (ROC) curve (0.76) similar to those of the fluorescence method and different from those of the CR. In conclusion, the performance of NIR-LTI was comparable to that of DDPen and QLF and may therefore be considered a valid and reliable alternative for the diagnosis of incipient lesions on the occlusal surface of permanent teeth.


Dental caries Early diagnosis Fluorescence Dental radiography Transillumination 



The authors thank São Paulo Research Foundation (FAPESP) for its financial support (PIPE-FAPESP 2010/50479-2), and DMC Equipamentos for the use of its prototype.

Conflict of interest

The authors certify that they have no commercial or associative interest that represents a conflict of interest in connection with the manuscript.


  1. 1.
    Bader JD, Shugars DA, Bonito AJ (2001) Systematic review of selected dental caries diagnostic and management methods. J Dent Educ 65:960–968PubMedGoogle Scholar
  2. 2.
    Hall A, Girkin JM (2004) A review of potential new diagnostic modalities for caries lesions. J Dent Res 83:C89–C94. doi: 10.1177/154405910408301S18 CrossRefPubMedGoogle Scholar
  3. 3.
    Pretty IA (2006) Caries detection and diagnosis: novel technologies. J Dent 34:727–739. doi: 10.1016/j.jdent.2006.06.001 CrossRefPubMedGoogle Scholar
  4. 4.
    Gomez J, Zakian C, Salsone S, Pinto SC, Taylor A, Pretty IA, Ellwood R (2013) In vitro performance of different methods in detecting occlusal caries lesions. J Dent 41:180–186. doi: 10.1016/j.jdent.2012.11.003 CrossRefPubMedGoogle Scholar
  5. 5.
    Ferreira Zandoná A, Santiago E, Eckert G, Fontana M, Ando M, Zero DT (2010) Use of ICDAS combined with quantitative light-induced fluorescence as a caries detection method. Caries Res 44:317–322. doi: 10.1159/000317294 PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Kühnisch J, Ifland S, Tranaeus S, Hickel R, Stösser L, Heinrich-Weltzien R (2007) In vivo detection of non-cavitated caries lesions on occlusal surfaces by visual inspection and quantitative light-induced fluorescence. Acta Odontol Scand 65:183–188. doi: 10.1080/00016350701291685 CrossRefPubMedGoogle Scholar
  7. 7.
    De Benedetto MS, Morais CC, Novaes TF, de Almeida Rodrigues J, Braga MM, Mendes FM (2011) Comparing the reliability of a new fluorescence camera with conventional laser fluorescence devices in detecting caries lesions in occlusal and smooth surfaces of primary teeth. Lasers Med Sci 26:157–162. doi: 10.1007/s10103-010-0757-1 CrossRefPubMedGoogle Scholar
  8. 8.
    Huth KC, Neuhaus KW, Gygax M, Bücher K, Crispin A, Paschos E, Hickel R, Lussi A (2008) Clinical performance of a new laser fluorescence device for detection of occlusal caries lesions in permanent molars. J Dent 36:1033–1040. doi: 10.1016/j.jdent.2008.08.013 CrossRefPubMedGoogle Scholar
  9. 9.
    Diniz MB, Boldieri T, Rodrigues JA, Santos-Pinto L, Lussi A, Cordeiro RC (2012) The performance of conventional and fluorescence-based methods for occlusal caries detection: an in vivo study with histologic validation. J Am Dent Assoc 143:339–350. doi: 10.14219/jada.archive.2012.0176 CrossRefPubMedGoogle Scholar
  10. 10.
    Darling CL, Huynh GD, Fried D (2006) Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm. J Biomed Opt 11:34023. doi: 10.1117/1.2204603 CrossRefPubMedGoogle Scholar
  11. 11.
    Bühler C, Ngaotheppitak P, Fried D (2005) Imaging of occlusal dental caries (decay) with near-IR light at 1310-nm. Opt Express 13:573–582. doi: 10.1364/OPEX.13.000573 CrossRefPubMedGoogle Scholar
  12. 12.
    Fried D, Featherstone JD, Darling CL, Jones RS, Ngaotheppitak P, Bühler CM (2005) Early caries imaging and monitoring with near-infrared light. Dent Clin N Am 49:771–793. doi: 10.1016/j.cden.2005.05.008 CrossRefPubMedGoogle Scholar
  13. 13.
    Diniz MB, Sciasci P, Rodrigues JA, Lussi A, Cordeiro RC (2011) Influence of different professional prophylactic methods on fluorescence measurements for detection of occlusal caries. Caries Res 45:264–268. doi: 10.1159/000326110 CrossRefPubMedGoogle Scholar
  14. 14.
    Souza JF, Boldieri T, Diniz MB, Rodrigues JA, Lussi A, Cordeiro RC (2013) Traditional and novel methods for occlusal caries detection: performance on primary teeth. Lasers Med Sci 28:287–295. doi: 10.1007/s10103-012-1154-8 CrossRefPubMedGoogle Scholar
  15. 15.
    Francescut P, Zimmerli B, Lussi A (2006) Influence of different storage methods on laser fluorescence values: a two-year study. Caries Res 40:181–185. doi: 10.1159/000092223 CrossRefPubMedGoogle Scholar
  16. 16.
    Diniz MB, Lima LM, Eckert G, Zandona AG, Cordeiro RC, Pinto LS (2011) In vitro evaluation of ICDAS and radiographic examination of occlusal surfaces and their association with treatment decisions. Oper Dent 36:133–142. doi: 10.2341/10-006-L CrossRefPubMedGoogle Scholar
  17. 17.
    Rodrigues JA, Hug I, Diniz MB, Lussi A (2008) Performance of fluorescence methods, radiographic examination and ICDAS II on occlusal surfaces in vitro. Caries Res 42:297–304. doi: 10.1159/000148162 CrossRefPubMedGoogle Scholar
  18. 18.
    Lussi A, Hack A, Hug I, Heckenberger H, Megert B, Stich H (2006) Detection of approximal caries with a new laser fluorescence device. Caries Res 40:97–103. doi: 10.1159/000091054 CrossRefPubMedGoogle Scholar
  19. 19.
    Diniz MB, Rodrigues JA, de Paula AB, Cordeiro RCL (2009) In vivo evaluation of laser fluorescence performance using different cut-off limits for occlusal caries detection. Lasers Med Sci 24:295–300. doi: 10.1007/s10103-008-0547-1 CrossRefPubMedGoogle Scholar
  20. 20.
    de Josselin de Jong E, Sundström F, Westerling H, Tranaeus S, ten Bosch JJ, Angmar-Månsson B (1995) A new method for in vivo quantification of changes in initial enamel caries with laser fluorescence. Caries Res 29:2–7. doi: 10.1159/000262032 CrossRefPubMedGoogle Scholar
  21. 21.
    Alammari MR, Smith PW, de Josselin de Jong E, Higham SM (2013) Quantitative light-induced fluorescence (QLF): a tool for early occlusal dental caries detection and supporting decision making in vivo. J Dent 41:127–132. doi: 10.1016/j.jdent.2012.08.013 CrossRefPubMedGoogle Scholar
  22. 22.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174. doi: 10.2307/2529310 CrossRefPubMedGoogle Scholar
  23. 23.
    Ewoldsen N, Koka S (2010) There are no clearly superior methods for diagnosing, predicting, and noninvasively treating dental caries. J Evid Based Dent Pract 10:16–17. doi: 10.1016/j.jebdp.2009.11.008 CrossRefPubMedGoogle Scholar
  24. 24.
    Maia AM, Karlsson L, Margulis W, Gomes AS (2011) Evaluation of two imaging techniques: near-infrared transillumination and dental radiographs for the detection of early approximal enamel caries. Dentomaxillofac Radiol 40:429–433. doi: 10.1259/dmfr/32702114 PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Pretty IA, Hall AF, Smith PW, Edgar WM, Higham SM (2002) The intra- and inter-examiner reliability of quantitative light-induced fluorescence (QLF) analyses. Br Dent J 193:105–109. doi: 10.1038/sj.bdj.4801496 CrossRefPubMedGoogle Scholar
  26. 26.
    Kühnisch J, Bücher K, Henschel V, Hickel R (2007) Reproducibility of DIAGNOdent 2095 and DIAGNOdent Pen measurements: results from an in vitro study on occlusal sites. Eur J Oral Sci 15:206–211. doi: 10.1111/j.1600-0722.2007.00441.x CrossRefGoogle Scholar
  27. 27.
    Kühnisch J, Heinrich-Weltzien R (2004) Quantitative light-induced fluorescence (QLF)—a literature review. Int J Comput Dent 7:325–338PubMedGoogle Scholar
  28. 28.
    Lussi A, Hellwig E (2006) Performance of a new laser fluorescence device for the detection of occlusal caries in vitro. J Dent 34:467–471. doi: 10.1016/j.jdent.2005.11.002 CrossRefPubMedGoogle Scholar
  29. 29.
    Bamzahim M, Shi XQ, Angmar-Månsson B (2002) Occlusal caries detection and quantification by DIAGNOdent and Electronic Caries Monitor: in vitro comparison. Acta Odontol Scand 60:360–364. doi: 10.1080/000163502762667397 CrossRefPubMedGoogle Scholar
  30. 30.
    Hintze H, Wenzel A, Frydenberg M (2002) Accuracy of caries detection with four storage phosphor systems and E-speed radiographs. Dentomaxillofac Radiol 31:170–175. doi: 10.1038/sj/dmfr/4600686 CrossRefPubMedGoogle Scholar
  31. 31.
    Dias da Silva PR, Martins Marques M, Steagall W Jr, Medeiros Mendes F, Lascala CA (2010) Accuracy of direct digital radiography for detecting occlusal caries in primary teeth compared with conventional radiography and visual inspection: an in vitro study. Dentomaxillofac Radiol 39:362–367. doi: 10.1259/dmfr/22865872 PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Kayipmaz S, Sezgin ÖS, Saricaoğlu ST, Çan G (2011) An in vitro comparison of diagnostic abilities of conventional radiography, storage phosphor, and cone beam computed tomography to determine occlusal and approximal caries. Eur J Radiol 80:478–482. doi: 10.1016/j.ejrad.2010.09.011 CrossRefPubMedGoogle Scholar
  33. 33.
    Teo TK, Ashley PF, Louca C (2014) An in vivo and in vitro investigation of the use of ICDAS, DIAGNOdent pen and CarieScan PRO for the detection and assessment of occlusal caries in primary molar teeth. Clin Oral Investig 18:737–744. doi: 10.1007/s00784-013-1021-4 CrossRefPubMedGoogle Scholar
  34. 34.
    Jones R, Fried D (2002) Attenuation of 1310-nm and 1550-nm laser light through sound dental enamel. Proc SPIE 4610:187–190. doi: 10.1117/12.469324 CrossRefGoogle Scholar
  35. 35.
    Salsone S, Taylor A, Gomez J, Pretty I, Ellwood R, Dickinson M, Lombardo G, Zakian C (2012) Histological validation of near-infrared reflectance multispectral imaging technique for caries detection and quantification. J Biomed Opt 17:076009. doi: 10.1117/1.JBO.17.7.076009 CrossRefPubMedGoogle Scholar
  36. 36.
    Fried D, Staninec M, Darling CL, Lee C, Kang H, Chan KH (2011) In vivo near-IR imaging of occlusal lesions at 1310-nm. Proc Soc Photo Opt Instrum Eng 7884(78840B). doi: 10.1117/12.878888

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • D. G. Bussaneli
    • 1
  • M. Restrepo
    • 1
  • T. Boldieri
    • 1
  • H. Pretel
    • 2
  • M. W. Mancini
    • 2
  • L. Santos-Pinto
    • 1
  • R. C. L. Cordeiro
    • 1
    Email author
  1. 1.Department of Orthodontics and Pediatric Dentistry, Araraquara Dental SchoolUniv. Estadual Paulista (UNESP)AraraquaraBrazil
  2. 2.NUPEN – Research and Education Center for Phototherapy in Health SciencesSão CarlosBrazil

Personalised recommendations