Advertisement

Lasers in Medical Science

, Volume 30, Issue 3, pp 1031–1039 | Cite as

A new model of in vitro fungal biofilms formed on human nail fragments allows reliable testing of laser and light therapies against onychomycosis

  • Taissa Vieira Machado Vila
  • Sonia Rozental
  • Claudia Maria Duarte de Sá Guimarães
Original Article

Abstract

Onychomycoses represent approximately 50 % of all nail diseases worldwide. In warmer and more humid countries like Brazil, the incidence of onychomycoses caused by non-dermatophyte molds (NDM, including Fusarium spp.) or yeasts (including Candida albicans) has been increasing. Traditional antifungal treatments used for the dermatophyte-borne disease are less effective against onychomycoses caused by NDM. Although some laser and light treatments have demonstrated clinical efficacy against onychomycosis, their US Food and Drug Administration (FDA) approval as “first-line” therapy is pending, partly due to the lack of well-demonstrated fungicidal activity in a reliable in vitro model. Here, we describe a reliable new in vitro model to determine the fungicidal activity of laser and light therapies against onychomycosis caused by Fusarium oxysporum and C. albicans. Biofilms formed in vitro on sterile human nail fragments were treated with 1064 nm neodymium-doped yttrium aluminum garnet laser (Nd:YAG), 420 nm intense pulsed light (IPL) IPL 420, followed by Nd:YAG, or near-infrared light ((NIR) 700–1400 nm). Light and laser antibiofilm effects were evaluated using cell viability assay and scanning electron microscopy (SEM). All treatments were highly effective against C. albicans and F. oxysporum biofilms, resulting in decreases in cell viability of 45–60 % for C. albicans and 92–100 % for F. oxysporum. The model described here yielded fungicidal activities that matched more closely to those observed in the clinic, when compared to published in vitro models for laser and light therapies. Thus, our model might represent an important tool for the initial testing, validation, and “fine-tuning” of laser and light therapies against onychomycosis.

Keywords

Biofilms Intense pulsed light Laser therapy Nd:YAG Near infrared Onychomycosis 

Notes

Acknowledgments

The authors thank Dr. Wanderley de Souza from the Laboratory of Cellular Ultrastructure Hertha Mayer (Federal University of Rio de Janeiro, RJ, Brazil) for providing the microscopy platform used in this work and Beatriz Bastos Fonseca for her help with SEM sample preparation. The work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Rio de Janeiro (FAPERJ), and Fundação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Conflict of interest

None to declare.

References

  1. 1.
    Murray S, Dawber R (2002) Onychomycosis of toenails: orthopaedic and podiatric considerations. Australas J Dermatol 43:105–112CrossRefPubMedGoogle Scholar
  2. 2.
    Ghannoum MA, Hajjeh RA, Scher R et al (2000) A large-scale North American study of fungal isolates from nails: the frequency of onychomycosis, fungal distribution, and antifungal susceptibility patterns. J Am Acad Dermatol 43:641–648. doi: 10.1067/mjd.2000.107754 CrossRefPubMedGoogle Scholar
  3. 3.
    Nenoff P, Krüger C, Ginter-Hanselmayer G, Tietz H-J (2014) Mycology—an update. Part 1: dermatomycoses: causative agents, epidemiology and pathogenesis. J Dtsch Dermatol Ges 12:188–212. doi: 10.1111/ddg.12245 PubMedGoogle Scholar
  4. 4.
    Foster K, Ghannoum M, Elewski B (2004) Epidemiologic surveillance of cutaneous fungal infection in the United States from 1999 to 2002. J Am Acad Dermatol 50:748–752CrossRefPubMedGoogle Scholar
  5. 5.
    Kaur R, Kashyap B, Bhalla P (2008) Onychomycosis—epidemiology, diagnosis and management. Indian J Med Microbiol 26:108–116CrossRefPubMedGoogle Scholar
  6. 6.
    De Araújo AJ, Souza MAJ, Bastos OM, de Oliveira JC (2003) Ocorrência de onicomicose em pacientes atendidos em consultórios dermatológicos da cidade do Rio de Janeiro. An Bras Dermatol 78:299–308Google Scholar
  7. 7.
    Jayatilake J, Tilakaratne W, Panagoda G (2009) Candidal onychomycosis: a mini-review. Mycopathologia 168:165–173. doi: 10.1007/s11046-009-9212-x CrossRefPubMedGoogle Scholar
  8. 8.
    Jo Siu W, Tatsumi Y, Senda H et al (2013) Comparison of in vitro antifungal activities of efinaconazole and currently available antifungal agents against a variety of pathogenic fungi associated with onychomycosis. Antimicrob Agents Chemother 57:1610–1616CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Cuenca-Estrella M, Gomez-Lopez A, Mellado E et al (2006) Head-to-head comparison of the activities of currently available antifungal agents against 3,378 Spanish clinical isolates of yeasts and filamentous fungi. Antimicrob Agents Chemother 50:917–921. doi: 10.1128/AAC.50.3.917 CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Alastruey-Izquierdo A, Cuenca-Estrella M, Monzón A et al (2008) Antifungal susceptibility profile of clinical Fusarium spp. isolates identified by molecular methods. J Antimicrob Chemother 61:805–809. doi: 10.1093/jac/dkn022 CrossRefPubMedGoogle Scholar
  11. 11.
    Bourgeois GP, Cafardi JA, Sellheyer K, Andea AA (2010) Disseminated Fusarium originating from toenail paronychia in a neutropenic patient. Cutis 85:191–194PubMedCentralPubMedGoogle Scholar
  12. 12.
    Burkharta CN, Burkhart CG, Gupta AK (2002) Dermatophytoma: recalcitrance to treatment because of existence of fungal biofilm. J Am Acad Dermatol 47:629–631. doi: 10.1067/mjd.2002.124699 CrossRefGoogle Scholar
  13. 13.
    Scher RK, Tavakkol A, Sigurgeirsson B et al (2007) Onychomycosis: diagnosis and definition of cure. J Am Acad Dermatol 56:939–944. doi: 10.1016/j.jaad.2006.12.019 CrossRefPubMedGoogle Scholar
  14. 14.
    Kimura U, Takeuchi K, Kinoshita A et al (2012) Treating onychomycosis of the toenail: clinical efficacy of the sub-millisecond 1,064 nm Nd:YAG laser using a 5 mm spot diameter. J Drugs Dermatol 11:496–504PubMedGoogle Scholar
  15. 15.
    Ortiz AE, Avram MM, Wanner MA (2013) A review of lasers and light for the treatment of onychomycosis. Lasers Surg Med 46:117–124. doi: 10.1002/lsm.22211 CrossRefPubMedGoogle Scholar
  16. 16.
    Gupta AK, Simpson F (2012) Device-based therapies for onychomycosis treatment. Skin Ther Lett 17:4–9Google Scholar
  17. 17.
    Bornstein E, Hermans W, Gridley S, Manni J (2009) Near-infrared photoinactivation of bacteria and fungi at physiologic temperatures. Photochem Photobiol 85:1364–1374CrossRefPubMedGoogle Scholar
  18. 18.
    Landsman A, Robbins A, Angelini P et al (2010) Treatment of mild, moderate, and severe onychomycosis using 870- and 930-nm light exposure. J Am Podiatr Med Assoc 100:166–177CrossRefPubMedGoogle Scholar
  19. 19.
    Hochman L (2011) Laser treatment of onychomycosis using a novel .65 millisecond pulsed ND:YAG 1064 nm laser. J Cosmet Laser Ther 13:2–5CrossRefPubMedGoogle Scholar
  20. 20.
    Vural E, Winfield HL, Shingleton AW et al (2007) The effects of laser irradiation on Trichophyton rubrum growth. Lasers Med Sci 23:349–353. doi: 10.1007/s10103-007-0492-4 CrossRefPubMedGoogle Scholar
  21. 21.
    Meral G, Tasar F, Kocagöz S, Sener C (2003) Factors affecting the antibacterial effects of Nd:YAG laser in vivo. Lasers Surg Med 32:197–202. doi: 10.1002/lsm.10128 CrossRefPubMedGoogle Scholar
  22. 22.
    Lee G (2012) Inflammatory acne in the Asian skin type III treated with a square pulse, time resolved spectral distribution IPL system: a preliminary study. Laser Ther 21:105–111CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Kawada A, Aragane Y, Kameyama H, Sangen Y (2002) Acne phototherapy with a high-intensity, enhanced, narrow-band, blue light source: an open study and in vitro investigation. J Dermatol Sci 30:129–135CrossRefPubMedGoogle Scholar
  24. 24.
    Omi T, Bjerring P, Sato S et al (2004) 420 nm intense continuous light therapy for acne. J Cosmet Laser Ther 6:156–162. doi: 10.1080/14764170410023785 CrossRefPubMedGoogle Scholar
  25. 25.
    Gold MH, Sensing W, Biron JA (2011) Clinical efficacy of home-use blue-light therapy for mild-to moderate acne. J Cosmet Laser Ther 13:308–314. doi: 10.3109/14764172.2011.630081 CrossRefPubMedGoogle Scholar
  26. 26.
    Gupta AK, Simpson F (2012) Medical devices for the treatment of onychomycosis. Dermatol Ther (Heidelb) 25:574–581CrossRefGoogle Scholar
  27. 27.
    Nenoff P, Grunewald S, Paasch U (2013) Laser therapy of onychomycosis. J Dtsch Dermatol Ges 12:33–38. doi: 10.1111/ddg.12251 PubMedGoogle Scholar
  28. 28.
    Gupta AK, Simpson F (2012) Newly approved laser systems for onychomycosis. J Am Podiatr Med Assoc 102:428–430CrossRefPubMedGoogle Scholar
  29. 29.
    Xu Z, Xu J, Zhuo F et al (2012) Effects of laser irradiation on Trichophyton rubrum growth and ultrastructure. Chin Med J (Engl) 125:3697–3700Google Scholar
  30. 30.
    Hees H, Raulin C, Baumler W (2012) Laser treatment of onychomycosis: an in vitro pilot study. J Dtsch Dermatol Ges 10:913–918PubMedGoogle Scholar
  31. 31.
    Paasch U, Mock A, Grunewald S et al (2013) Antifungal efficacy of lasers against dermatophytes and yeasts in vitro. Int J Hyperth 29:544–550CrossRefGoogle Scholar
  32. 32.
    Nusbaum AG, Kirsner RS, Charles CA (2012) Biofilms in dermatology. Skin Ther Lett 17:1–5Google Scholar
  33. 33.
    Vila TVM, Ishida K, de Souza W et al (2012) Effect of alkylphospholipids on Candida albicans biofilm formation and maturation. J Antimicrob Chemother 68:113–125. doi: 10.1093/jac/dks353 CrossRefPubMedGoogle Scholar
  34. 34.
    Chandra J, Kuhn DM, Mukherjee PK et al (2001) Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183:5385–5394. doi: 10.1128/JB.183.18.5385-5394.2001 CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Ramage G, VandeWalle K, Wickes BL, Lopez-Ribot JL (2001) Characteristics of biofilm formation by Candida albicans. Rev Iberoam Micol 18:163–170PubMedGoogle Scholar
  36. 36.
    Faergemann J, Baran R (2003) Epidemiology, clinical presentation and diagnosis of onychomycosis. Br J Dermatol 149:1–4CrossRefPubMedGoogle Scholar
  37. 37.
    Greer DL (1995) Evolving role of nondermatophytes in onychomycosis. Int J Dermatol 34:521–524CrossRefPubMedGoogle Scholar
  38. 38.
    Chandra J, Patel JD, Li J et al (2005) Modification of surface properties of biomaterials influences the ability of Candida albicans to form biofilms. Appl Environ Microbiol 71:8795–8801. doi: 10.1128/AEM.71.12.8795–8801.2005 CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Ramage G, Wickes BL, Lopez-Ribot JL (2008) A seed and feed model for the formation of Candida albicans biofilms under flow conditions using an improved modified Robbins device. Rev Iberoam Micol 25:37–40CrossRefPubMedGoogle Scholar
  40. 40.
    Imamura Y, Chandra J, Mukherjee PK et al (2008) Fusarium and Candida albicans biofilms on soft contact lenses: model development, influence of lens type, and susceptibility to lens care solutions. Antimicrob Agents Chemother 52:171–182. doi: 10.1128/AAC. 00387-07 CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Mukherjee PK, Chandra J, Yu C et al (2012) Characterization of Fusarium keratitis outbreak isolates: contribution of biofilms to antimicrobial resistance and pathogenesis. Invest Ophthalmol Vis Sci 53:4450–4457. doi: 10.1167/iovs. 12-9848 CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Manevitch Z, Lev D, Hochberg M et al (2010) Direct antifungal effect of femtosecond laser on Trichophyton rubrum onychomycosis. Photochem Photobiol 86:476–479CrossRefPubMedGoogle Scholar
  43. 43.
    Fan X, Xing Y-Z, Liu L-H et al (2013) Effects of 420-nm intense pulsed light in an acne animal model. J Eur Acad Dermatol Venereol 27:1168–1171. doi: 10.1111/j.1468-3083.2012.04487.x CrossRefPubMedGoogle Scholar
  44. 44.
    Kozarev J, Vizintin Z (2010) Novel laser therapy in treatment of onychomycosis. J Laser Health Acad 1:1–8Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Taissa Vieira Machado Vila
    • 1
  • Sonia Rozental
    • 1
    • 3
  • Claudia Maria Duarte de Sá Guimarães
    • 2
  1. 1.Instituto de Biofisica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Private OfficeRio de JaneiroBrazil
  3. 3.Laboratório de Biologia Celular de Fungos, Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations