Lasers in Medical Science

, Volume 30, Issue 1, pp 413–420 | Cite as

In vitro assessment of effects of hyperglycemia on the optical properties of blood during coagulation using optical coherence tomography

  • Ying Liu
  • Guoyong Wu
  • Huajiang WeiEmail author
  • Zhouyi Guo
  • Hongqin Yang
  • Yonghong He
  • Shusen Xie
  • Yuqing Zhang
  • Zhenguo Zhu
Original Article


No published reports have demonstrated the capability of the optical coherence tomography technique for quantifying the optical coherence tomography signal slope, 1/e light penetration depth, and attenuation coefficient of hyperglycemic blood by an in vitro assessment. The purpose of this study was to investigate the effects of hyperglycemia on optical properties during in vitro blood coagulation by optical coherence tomography. Normal whole blood acted as the control group. After 1-h coagulation, the average optical coherence tomography signal slope decreased approximately 23.3 and 16.7 %, and the 1/e light penetration depths increased approximately 21.5 and 19.2 % for the control and hyperglycemic groups, respectively. It could be seen from the 1/e light penetration depth evolution curves that the blood coagulation time was about (425 ± 19) s for normal whole blood and (367 ± 15) s for the hyperglycemic blood. The coagulation time decreased 13.6 % for the hyperglycemic blood compared with that for normal whole blood. There was statistically significant difference in blood coagulation time between the hyperglycemic and normal whole blood (p < 0.05). The results suggested that hyperglycemia has a procoagulant effect. Our experiment was the first reported study of monitoring hyperglycemic blood coagulation using OCT. We conclude that OCT is potential technique to quantify and follow the liquid-gel transition of hyperglycemic blood coagulation.


Blood Coagulation Hyperglycemia Optical coherence tomography 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 61335011, 61275187, and 81071790), Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20114407110001 and 200805740003), the Science and Technology Innovation Project of the Education Department of Guangdong Province of China, and Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, China (Grant No. JYG1202)


  1. 1.
    Xu XQ, Lin J (2010) Evaluation of whole blood coagulation process by optical coherence Tomography. Proc SPIE 7845:784508CrossRefGoogle Scholar
  2. 2.
    Hoyert DL, Kung H, Smith BL (2005) Deaths: preliminary data for 2003. Natl Vital Stat Rep 53(15):1–48Google Scholar
  3. 3.
    Mgbeokwere U, Egwuom O (2012) Hot hypertonic saline and compression device: a novel approach in preventing severe hemorrhage during extirpation of deep vascular malformations of the face. Ann Med Health Sci Res 2(1):1–4PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Xu XQ, Lin J, Fu FF (2011) Optical coherence tomography to investigate optical properties of blood during coagulation. J Biomed Opt 16(9):096002PubMedCrossRefGoogle Scholar
  5. 5.
    Darlington DN, Kremenevskiy I, Pusateri AE, Scherer MR, Fedyk CG, Kheirabaldi BS, Delgado AV, Dubick MA (2012) Effects of in vitro hemodilution, hypothermia and rFVIIa addition on coagulation in human blood. Int J Burns Trauma 2(1):42–50PubMedCentralPubMedGoogle Scholar
  6. 6.
    Stegenga ME, van der Crabben SN, Levi M, de Vos AF, Tanck MW, Sauerwein HP, van der Poll T (2006) Hyperglycemia stimulates coagulation, whereas hyperinsulinemia impairs fibrinolysis in healthy humans. Diabetes 55(6):1807–1812PubMedCrossRefGoogle Scholar
  7. 7.
    Vaidyula VR, Rao AK, Mozzoli M, Homko C, Cheung P, Boden G (2006) Effects of hyperglycemia and hyperinsulinemia on circulating tissue factor procoagulant activity and platelet CD40 ligand. Diabetes 55(1):202–208PubMedCrossRefGoogle Scholar
  8. 8.
    Ceriello A, Giugliano D, Quatraro A, Consoli G, Stante A, Russo PD, D’Onofrio F (1987) Induced hyperglycemia alters antithrombin III activity but not its plasma concentration in healthy normal subjects. Diabetes 36(3):320–323PubMedCrossRefGoogle Scholar
  9. 9.
    Gennisson JL, Lerouge S, Cloutier G (2006) Assessment by transient elastography of the viscoelastic properties of blood during clotting. Ultrasound Med Biol 32(10):1529–1537PubMedCrossRefGoogle Scholar
  10. 10.
    Muramatsu H, Kimura K, Ataka T, Homma R, Miyra Y, Karube I (1991) A quartz crystal viscosity sensor for monitoring coagulation reaction and its application to a multichannel coagulation detector. Biosens Bioelectron 6(4):353–358PubMedCrossRefGoogle Scholar
  11. 11.
    Barrowcliffe TW, Cattaneo M, Podda GM, Bucciarelli P, Lussana F, Lecchi A, Toh CH, Hemker HC, Béguin S, Ingerslev J, Sørensen B (2006) New approaches for measuring coagulation. Haemophilia 12(s3):76–81PubMedCrossRefGoogle Scholar
  12. 12.
    Luostarinen T, Niiya T, Schramko A, Rosenberg P, Niemi T (2011) Comparison of hypertonic saline and mannitol on whole blood coagulation in vitro assessed by thromboelastometry. Neurocrit Care 14(2):238–243PubMedCrossRefGoogle Scholar
  13. 13.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA (1991) Optical coherence tomography. Science 254(5035):1178–1181PubMedCrossRefGoogle Scholar
  14. 14.
    Zhernovaya O, Tuchin VV, Leahy MJ (2013) Blood optical clearing studied by optical coherence tomography. J Biomed Opt 18(2):026014CrossRefGoogle Scholar
  15. 15.
    Chen Z, Milner TE, Srinivas S, Wang XJ, Malekafzali A, van Gemert MJC, Nelson JS (1997) Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Opt Lett 22(14):1119–1121PubMedCrossRefGoogle Scholar
  16. 16.
    Brezinski M, Saunders K, Jesser C, Li XD, Fujimoto J (2001) Index matching to improve optical coherence tomography imaging through blood. Circulation 103:1999–2003PubMedCrossRefGoogle Scholar
  17. 17.
    Brezinski ME, Tearney GJ, Weissman NJ, Boppart SA, Bouma BE, Hee MR, Weyman AE, Swanson EA, Southern JF, Fujimoto JG (1997) Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound. Heart 77(5):397–403PubMedCentralPubMedGoogle Scholar
  18. 18.
    Patwari P, Weissman NJ, Boppart SA, Jesser C, Stamper D, Fujimoto JG, Brezinski ME (2000) Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound. Am J Cardiol 85(5):641–644PubMedCrossRefGoogle Scholar
  19. 19.
    Tuchin VV, Xu X, Wang RK (2002) Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and aggregation of immersed blood. Appl Opt 41(1):258–271PubMedCrossRefGoogle Scholar
  20. 20.
    Yu L, Chen Z (2010) Doppler variance imaging for three-dimensional retina and choroid angiography. J Biomed Opt 15(1):016029PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Xu XQ, Wang RK, Elder JB, Tuchin VV (2003) Effect of dextran-induced changes in refractive index and aggregation on optical properties of whole blood. Phys Med Biol 48(9):1205–1221PubMedCrossRefGoogle Scholar
  22. 22.
    Wei HJ, Wu GY, Guo ZY, Yang HQ, He YH, Xie SS, Guo X (2012) Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography. J Biomed Opt 17(11):116006PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang YQ, Wei HJ, Yang HQ, Guo ZY, Xie SS, Gu HM, Guo X, Zhu ZG (2013) In vitro study of the effects of ultrasound-mediated glycerol on optical attenuation of human normal and cancerous esophageal tissues with optical coherence tomography. Laser Phys 23(6):065604CrossRefGoogle Scholar
  24. 24.
    Zhang YQ, Wei HJ, Yang HQ, He YH, Wu GY, Xie SS, Zhu ZG, He RY (2013) Noninvasive blood glucose monitoring during oral intake of different sugars with optical coherence tomography in human subjects. J Biophotonics 6(9):699–707PubMedCrossRefGoogle Scholar
  25. 25.
    Zhu ZG, Wei HJ, Wu GY, Yang HQ, He YH, Xie SS (2012) Synergistic effect of hyperosmotic agents and sonophoresis on breast tissue optical properties and permeability studied with spectral domain optical coherence tomography. J Biomed Opt 17(8):086002PubMedCrossRefGoogle Scholar
  26. 26.
    Guo X, Guo ZY, Wei HJ, Yang HQ, He YH, Xie SS, Wu GY, Zhong HQ, Li LQ, Zhao QL (2010) In vivo quantification of propylene glycol, glucose and glycerol diffusion in human skin with optical coherence tomography. Laser Phys 20(9):1849–1855CrossRefGoogle Scholar
  27. 27.
    Larin KV, Eledrisi MS, Motamedi M, Esenaliev RO (2002) Noninvasive blood glucose monitoring with optical coherence tomography. Diabetes Care 25(12):2263–2267PubMedCrossRefGoogle Scholar
  28. 28.
    Xu X, Zhu Q (2008) Sonophoretic delivery for contrast and depth improvement in skin optical coherence tomography. IEEE J Sel Top Quantum Electron 14(1):56–61CrossRefGoogle Scholar
  29. 29.
    Xu X, Zhu Q, Sun C (2008) Combined effect of ultrasound-SLS on skin optical clearing. IEEE Photonic Tech L 20(24):2117–2119CrossRefGoogle Scholar
  30. 30.
    Schmitt JM, Knüttel A, Bonner RF (1993) Measurement of optical properties of biological tissues by low-coherence reflectometry. Appl Opt 32(30):6032–6042PubMedCrossRefGoogle Scholar
  31. 31.
    van der Meer FJ, Faber DJ, Sassoon DMB, Aalders MC, Pasterkamp G, van Leeuwen TG (2005) Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography. IEEE Trans Med Imaging 24(10):1369–1376PubMedCrossRefGoogle Scholar
  32. 32.
    Lee P, Gao WR, Zhang XL (2010) Performance of single-scattering model versus multiple-scattering model in the determination of optical properties of biological tissue with optical coherence tomography. Appl Opt 49(18):3538–3544PubMedCrossRefGoogle Scholar
  33. 33.
    Levitz D, Thrane L, Frosz MH, Anderson PE, Anderson CB, Valanciunaite J, Swartling J, Andersson-Engels S, Hansen PR (2004) Determination of optical scattering properties of highly-scattering media in optical coherence tomography images. Opt Express 12(2):249–259PubMedCrossRefGoogle Scholar
  34. 34.
    Schmitt JM, Knüttel A (1997) Model of optical coherence tomography of heterogeneous tissue. J Opt Soc Am A 14(6):1231–1242CrossRefGoogle Scholar
  35. 35.
    Thrane L, Yura HT, Andersen PE (2000) Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle. J Opt Soc Am A 17(3):484–490CrossRefGoogle Scholar
  36. 36.
    Zhao QL, Zhou CQ, Wei HJ, He YH, Chai XY, Ren QS (2012) Ex vivo determination of glucose permeability and optical attenuation coefficient in normal and adenomatous human colon tissues using spectral domain optical coherence tomography. J Biomed Opt 17(10):105004PubMedCrossRefGoogle Scholar
  37. 37.
    Kodach VM, Faber DJ, van Marle J, van Leeuwen TG, Kalkman J (2011) Determination of the scattering anisotropy with optical coherence tomography. Opt Express 19(7):6131–6140PubMedCrossRefGoogle Scholar
  38. 38.
    Yang Y, Wang T, Biswal NC, Wang X, Sanders M, Brewer M, Zhu Q (2011) Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue. J Biomed Opt 16(9):090504PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Thrane L, Yura HT, Andersen PE (2000) Analysis of optical coherence tomography systems based on the extended Huygens-Fresenel principle. J Opt Soc Am A 17(4):484–490CrossRefGoogle Scholar
  40. 40.
    Xu X, Yu L, Chen Z (2008) Optical clearing of flowing blood using dextrans with spectral domain optical coherence tomography. J Biomed Opt 13(2):021107PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Friebel M, Roggan A, Muller G, Meinke M (2006) Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions. J Biomed Opt 11(3):034021CrossRefGoogle Scholar
  42. 42.
    Carr ME (2001) Diabetes mellitus a hypercoagulable state. J Diabetes Complicat 15(1):44–54PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Ying Liu
    • 1
  • Guoyong Wu
    • 2
  • Huajiang Wei
    • 1
    Email author
  • Zhouyi Guo
    • 1
  • Hongqin Yang
    • 3
  • Yonghong He
    • 4
  • Shusen Xie
    • 3
  • Yuqing Zhang
    • 1
  • Zhenguo Zhu
    • 1
  1. 1.MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of BiophotonicsSouth China Normal UniversityGuangzhouChina
  2. 2.Department of Surgery, the First Affiliated HospitalSun Yat-Sen UniversityGuangzhouChina
  3. 3.Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education of ChinaFujian Normal UniversityFuzhouChina
  4. 4.Graduate School at ShenzhenTsinghua UniversityShenzhenChina

Personalised recommendations