Lasers in Medical Science

, Volume 30, Issue 1, pp 295–301 | Cite as

Effects of far-infrared radiation on heart rate variability and central manifestations in healthy subjects: a resting-fMRI study

  • Yii-Jeng Lin
  • Yen-Ying Kung
  • Wen-Jui Kuo
  • David M. Niddam
  • Chou-Ming Cheng
  • Chih-Che Chou
  • Tzu-Chen Yeh
  • Jen-Chuen Hsieh
  • Jen-Hwey ChiuEmail author
Original Article


The aim of this study was to investigate the autonomic responses and central manifestations by peripheral FIR stimulation. Ten subjects (mean ± SD age 26.2 ± 3.52 years) received FIR stimulation at left median nerve territory for 40 min. Electrocardiograph was continuously recorded and heart rate variability (HRV) were analyzed. By using a 3 T-MRI scanner, three sessions of resting-state functional magnetic resonance images (fMRI) were acquired, namely, before (baseline-FIR), immediately after (IA-FIR) and 15 min after FIR was turned off (Post-FIR). The fractional amplitude of low-frequency (0.01-0.08 Hz) fluctuation (fALFF) of each session to evaluate the intensity of resting-brain activity in each session was analyzed. Our results showed that FIR stimulation induced significant HRV responses such as an increasing trend of nLF and LF/HF ratio, while FIR increased fALFF in right superior front gyrus, middle frontal gyrus and decreased the resting brain activity at fusiform gyrus, extrastriae cortex, inferior temporal gyrus and middle temporal gyrus, especially 15 min after FIR was turned off. We conclude that the central manifestation and the autonomic responses are prominent during and after FIR stimulation, which provide important mechanistic explanation on human disorder treated by such energy medicine.


Far-infrared radiation Heart rate variability Resting state network fMRI 



Far-infrared radiation


Heart rate variability


Functional magnetic resonance imaging


Fractional amplitude of low-frequency fluctuation



We are indebted to the Laboratory of Integrated Brain Research, Department of Medical Research and Education, Taipei Veterans General Hospital, Taiwan, Republic of China, for their excellent comments and resources. We acknowledge MR support from National Yang-Ming University, Taiwan, which is in part supported by the MOE plan for the top university.

Competing interest

The authors have no competing interest.

Authors’ contributions

Lin YJ conducted the studies, analyzed the data, and wrote the manuscript. Chiu JH supervised Dr. Lin YJ and designed the study. Hsieh JC assisted the study design while KungYY, Kuo WJ, Niddam DM, Chou CC, Cheng CM, and Yeh TC provided facilities and helped to analyze the data.


  1. 1.
    Baxter GD, Bleakley C, McDonough S (2008) Clinical effectiveness of laser acupuncture: a systematic review. J Acupunct Meridian Stud 1:65–82PubMedCrossRefGoogle Scholar
  2. 2.
    Bjordal JM, Lopes-Martins RA, Joensen J, Couppe C, Ljunggren AE et al (2008) A systematic review with procedural assessments and meta-analysis of low level laser therapy in lateral elbow tendinopathy (tennis elbow). BMC Musculoskelet Disord 9:75PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Lin CC, Chang CF, Lai MY, Chen TW, Lee PC et al (2007) Far-infrared therapy: a novel treatment to improve access blood flow and unassisted patency of arteriovenous fistula in hemodialysis patients. J Am Soc Nephrol 18:985–992PubMedCrossRefGoogle Scholar
  4. 4.
    Miyata M, Kihara T, Kubozono T, Ikeda Y, Shinsato T et al (2008) Beneficial effects of Waon therapy on patients with chronic heart failure: results of a prospective multicenter study. J Cardiol 52:79–85PubMedCrossRefGoogle Scholar
  5. 5.
    Yu SY, Chiu JH, Yang SD, Hsu YC, Lui WY et al (2006) Biological effect of far-infrared therapy on increasing skin microcirculation in rats. Photodermatol Photoimmunol Photomed 22:78–86PubMedCrossRefGoogle Scholar
  6. 6.
    Akasaki Y, Miyata M, Eto H, Shirasawa T, Hamada N et al (2006) Repeated thermal therapy up-regulates endothelial nitric oxide synthase and augments angiogenesis in a mouse model of hindlimb ischemia. Circ J 70:463–470PubMedCrossRefGoogle Scholar
  7. 7.
    Lewith GT, White PJ, Pariente J (2005) Investigating acupuncture using brain imaging techniques: the current state of play. Evid Based Complement Alternat Med 2:315–319PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Campbell A (2006) Point specificity of acupuncture in the light of recent clinical and imaging studies. Acupunct Med 24:118–122PubMedCrossRefGoogle Scholar
  9. 9.
    Wu MT, Sheen JM, Chuang KH, Yang P, Chin SL et al (2002) Neuronal specificity of acupuncture response: a fMRI study with electroacupuncture. Neuroimage 16:1028–1037PubMedCrossRefGoogle Scholar
  10. 10.
    Hsieh JC, Tu CH, Chen FP, Chen MC, Yeh TC et al (2001) Activation of the hypothalamus characterizes the acupuncture stimulation at the analgesic point in human: a positron emission tomography study. Neurosci Lett 307:105–108PubMedCrossRefGoogle Scholar
  11. 11.
    Hui KKS, Nixon EE, Vangel MG, Liu J, Marina O et al (2007) Characterization of the “deqi” response in acupuncture. BMC Complement Alternat Med 7:33CrossRefGoogle Scholar
  12. 12.
    Ho TJ, Duann JR, Chen CM, Chen JH, Shen WC et al (2008) Carryover effects alter FMRI statistical analysis in an acupuncture study. Am J Chin Med 36:55–70PubMedCrossRefGoogle Scholar
  13. 13.
    Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711PubMedCrossRefGoogle Scholar
  14. 14.
    Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn Reson Med 34:537–541PubMedCrossRefGoogle Scholar
  15. 15.
    Wang K, Jiang T, Yu C, Tian L, Li J et al (2007) Spontaneous activity associated with primary visual cortex: a resting-state fmri study. Cereb Cortex 18:697–704PubMedCrossRefGoogle Scholar
  16. 16.
    Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38PubMedCrossRefGoogle Scholar
  17. 17.
    Franco AR, Pritchard A, Calhoun VD, Mayer AR (2009) Interrater and intermethod reliability of default mode network selection. Hum Brain Mapp 30:2293–2303PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Greicius M, Flores B, Menon V, Glover G, Solvason H et al (2007) Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 62:429–437PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Baliki MN, Geha PY, Apkarian AV, Chialvo DR (2008) Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 28:1398–1403PubMedCrossRefGoogle Scholar
  20. 20.
    Loggia ML, Berna C, Kim J, Cahalan CM, Gollub RL et al (2013) Disrupted brain circuitry for pain-related reward/punishment in fibromyalgia. Arthritis RheumGoogle Scholar
  21. 21.
    Kuo CD, Chen GY (1998) Heart rate variability standards. Circulation 98:1589–1590PubMedGoogle Scholar
  22. 22.
    (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93:1043–1065Google Scholar
  23. 23.
    Terashima K, Mikami A, Tachibana N, Kumano-Go T, Teshima Y et al (2004) Sleep characteristics of menopausal insomnia: a polysomnographic study. Psychiatry Clin Neurosci 58:179–185PubMedCrossRefGoogle Scholar
  24. 24.
    Chen CJ, Kuo TB, Tseng YJ, Yang CC (2009) Combined cardiac sympathetic excitation and vagal impairment in patients with non-organic erectile dysfunction. Clin Neurophysiol 120:348–352PubMedCrossRefGoogle Scholar
  25. 25.
    Kung YY, Yang CC, Chiu JH, Kuo TB (2011) The relationship of subjective sleep quality and cardiac autonomic nervous system in postmenopausal women with insomnia under auricular acupressure. Menopause 18:638–645PubMedCrossRefGoogle Scholar
  26. 26.
    Yan C, Zang Y (2010) DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 5:12Google Scholar
  27. 27.
    Zou Q-H, Zhu C-Z, Yang Y, Zuo X-N, Long X-Y et al (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172:137–141PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Lin CC, Liu XM, Peyton K, Wang H, Yang WC et al (2008) Far infrared therapy inhibits vascular endothelial inflammation via the induction of heme oxygenase-1. Arterioscler Thromb Vasc Biol 28:739–745PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Hsu YH, Chen YC, Chen TH, Sue YM, Cheng TH et al (2012) Far-infrared therapy induces the nuclear translocation of PLZF which inhibits VEGF-induced proliferation in human umbilical vein endothelial cells. PLoS One 7:e30674PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Phil Trans R Soc B Biol Sci 360:1001–1013CrossRefGoogle Scholar
  31. 31.
    Van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519–534PubMedCrossRefGoogle Scholar
  32. 32.
    Fried I, Wilson CL, MacDonald KA, Behnke EJ (1998) Electric current stimulates laughter. Nature 391:650PubMedCrossRefGoogle Scholar
  33. 33.
    Goldberg II, Harel M, Malach R (2006) When the brain loses its self: prefrontal inactivation during sensorimotor processing. Neuron 50:329–339PubMedCrossRefGoogle Scholar
  34. 34.
    Muehlhan M, Lueken U, Siegert J, Wittchen HU, Smolka MN et al (2013) Enhanced sympathetic arousal in response to FMRI scanning correlates with task induced activations and deactivations. PLoS One 8:e72576PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Yii-Jeng Lin
    • 1
  • Yen-Ying Kung
    • 2
  • Wen-Jui Kuo
    • 3
    • 4
  • David M. Niddam
    • 4
    • 5
  • Chou-Ming Cheng
    • 4
  • Chih-Che Chou
    • 5
  • Tzu-Chen Yeh
    • 4
    • 5
  • Jen-Chuen Hsieh
    • 4
    • 5
    • 6
    • 7
  • Jen-Hwey Chiu
    • 1
    • 8
    Email author
  1. 1.Institute of Traditional Medicine, School of MedicineNational Yang-Ming UniversityTaipeiRepublic of China
  2. 2.Research Center for Traditional MedicineTaipei Veterans General HospitalTaiwanRepublic of China
  3. 3.Institute of Neuroscience, School of MedicineNational Yang-Ming UniversityTaiwanRepublic of China
  4. 4.Laboratory of Integrated Brain Research, Department of Medical Research and EducationTaipei Veterans General HospitalTaiwanRepublic of China
  5. 5.Institute of Brain Science, School of MedicineNational Yang-Ming, UniversityTaiwanRepublic of China
  6. 6.Brain Research CenterNational Yang-Ming UniversityTaiwanRepublic of China
  7. 7.Institute of Brain ScienceNational Yang-Ming UniversityTaiwanRepublic of China
  8. 8.Division of General SurgeryTaipei Veterans General HospitalTaiwanRepublic of China

Personalised recommendations