Lasers in Medical Science

, Volume 30, Issue 7, pp 1815–1822 | Cite as

Low-level laser therapy as an alternative for pulpotomy in human primary teeth

  • Nádia Carolina Teixeira Marques
  • Natalino Lourenço Neto
  • Camila de Oliveira Rodini
  • Ana Paula Fernandes
  • Vivien Thiemy Sakai
  • Maria Aparecida Andrade Moreira Machado
  • Thais Marchini Oliveira
Original Article


This study aimed to evaluate the effects of low-level laser therapy (LLLT) on pulpal response of primary teeth. Twenty mandibular primary molars were randomly divided into the following groups: group I Buckley’s formocresol (diluted at 1:5), group II calcium hydroxide, group III LLLT + zinc oxide/eugenol, and group IV LLLT + calcium hydroxide. LLLT parameters were set at 660-nm wavelength, 10-mW power output, and 2.5 J/cm2 energy density for 10 s in continuous mode (InGaAlP laser, Twin Laser®, MMOptics, Sao Carlos, Sao Paulo, Brazil). The teeth were extracted at the regular exfoliation period. The dentin-pulp complex was graded by an established histopathological score system. Statistical analysis was performed by Kruskal-Wallis and chi-square test. The histopathological assessment revealed statistically significant differences among groups (P < 0.05). The lowest degree of pulpal inflammation was present in LLLT + calcium hydroxide (P = 0.0296). Calcium hydroxide showed the highest rate of hard tissue barrier (P = 0.0033), odontoblastic layer (P = 0.0033), and dense collagen fibers (P = 0.0095). On the other hand, formocresol showed the highest incidence of internal resorption (P = 0.0142). Based on this study, low-level laser therapy preceding the use of calcium hydroxide exhibited satisfactory results on pulp tissue healing. However, further clinical studies on human teeth with long-term follow-up are needed to test the low-level laser therapy efficacy.


Tooth deciduous Calcium hydroxide Laser therapy low level Pulpotomy Dental pulp 



The authors would like to thank all the volunteers and the financial support of the Sao Paulo Research Foundation (FAPESP grant nos. 2009/11284-4 to TMO). The authors would like to thank Daniele Santi Ceolin and Patrícia De Sá Mortágua Gemino for their excellent laboratorial assistance.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Agamy HA, Bakry NS, Mounir MM, Avery DR (2004) Comparison of mineral trioxide aggregate and formocresol as pulp-capping agents in pulpotomized primary teeth. Pediatr Dent 26:302–309PubMedGoogle Scholar
  2. 2.
    Eidelman E, Holan G, Fuks AB (2001) Mineral trioxide aggregate vs. formocresol in pulpotomized primary molars: a preliminary report. Pediatr Dent 23:15–18PubMedGoogle Scholar
  3. 3.
    Fuks AB (2008) Vital pulp therapy with new materials for primary teeth: new directions and treatment perspectives. Pediatr Dent 30:211–219PubMedGoogle Scholar
  4. 4.
    Oliveira TM, Moretti ABS, Sakai VT, Lourenço Neto N, Machado MAAM, Abdo RCC (2013) Clinical, radiographic and histologic analysis of the effects of pulp capping materials used in pulpotomies of human primary teeth. Eur Arch Paediatr Dent 14:65–71CrossRefPubMedGoogle Scholar
  5. 5.
    Saltzman B, Sigal M, Clokie C, Rukavina J, Titley K, Kulkarni GV (2005) Assessment of a novel alternative to conventional formocresol-zinc oxide eugenol pulpotomy for the treatment of pulpally involved human primary teeth: diode laser-mineral trioxide aggregate pulpotomy. Int J Paediatr Dent 15:437–447CrossRefPubMedGoogle Scholar
  6. 6.
    Odabas ME, Bodur H, Barus E, Demir C (2007) Clinical, radiographic, and histopathologic evaluation of Nd:YAG laser pulpotomy on human primary teeth. J Endod 33:415–421CrossRefPubMedGoogle Scholar
  7. 7.
    Golpayegani MV, Ansari G, Tadayon N (2010) Clinical and radiographic success of Low level laser therapy (LLLT) on primary molars pulpotomy. J Biol Sci 5(1):51–55. doi: 10.3923/rjbsci.2010.51.55 Google Scholar
  8. 8.
    Huth KC, Hajek-Al-Khatar N, Wolf P, Ilie N, Hickel R, Paschos E (2012) Long-term effectiveness of four pulpotomy techniques: 3-year randomised controlled trial. Clin Oral Investig 16:1243–1250CrossRefPubMedGoogle Scholar
  9. 9.
    Fernandes AP, Lourenço Neto N, Marques NCT, Moretti ABS, Sakai VT, Silva TC, Machado MAAM, Oliveira TM (2014) Clinical and radiographic outcomes of the use of Low level laser therapy in vital pulp of primary teeth. Int J Paediatr Dent. doi: 10.1111/ipd.12115 PubMedGoogle Scholar
  10. 10.
    Olivi G, Genovese MD, Caprioglio C (2009) Evidence-based dentistry on laser paediatric dentistry: review and outlook. Eur J Paediatr Dent 10:29–40CrossRefPubMedGoogle Scholar
  11. 11.
    Martens LC (2011) Laser physics and a review of laser applications in dentistry for children. Eur Arch Paediatr Dent 12:61–67CrossRefPubMedGoogle Scholar
  12. 12.
    AlGhamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Laser Med Sci 27:237–249CrossRefGoogle Scholar
  13. 13.
    Cannon M, Wagner C, Thobaben JZ, Jurado R, Solt D (2011) Early response of mechanically exposed dental pulps of swine to antibacterial-hemostatic agents or diode laser irradiation. J Clin Pediatr Dent 35:271–276CrossRefPubMedGoogle Scholar
  14. 14.
    Basso FG, Pansani TN, Turrioni AP, Bagnato VS, Hebling J, de Souza Costa CA (2012) In vitro wound healing improvement by low-level laser therapy application in cultured gingival fibroblasts. Int J Dent 2012:719452. doi: 10.1155/2012/719452 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    De Coster P, Rajasekharan S, Martens L (2013) Laser-assisted pulpotomy in primary teeth: a systematic review. Int J Paediatr Dent 23:389–399PubMedGoogle Scholar
  16. 16.
    Eslamian L, Borzabadi-Farahani A, Hassanzadeh-Azhiri A, Badiee MR, Fekrazad R (2014) The effect of 810-nm low-level laser therapy on pain caused by orthodontic elastomeric separators. Lasers Med Sci 29:559–564CrossRefPubMedGoogle Scholar
  17. 17.
    Rodrigues NC, Brunelli R, de Araújo HS, Parizotto NA, Renno AC (2013) Low-level laser therapy (LLLT) (660 nm) alters gene expression during muscle healing in rats. J Photochem Photobiol B 120:29–35CrossRefPubMedGoogle Scholar
  18. 18.
    Liu JF (2006) Effects of Nd:YAG laser pulpotomy on human primary molars. J Endod 32:404–407CrossRefPubMedGoogle Scholar
  19. 19.
    Durmus B, Tanboga I (2014) In vivo evaluation of the treatment outcome of pulpotomy in primary molars using diode laser, formocresol, and ferric sulphate. Photomed Laser Surg 32:289–295CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Moretti AB, Fornetti APC, Oliveira TM, Sakai VT, Santos CF, Machado MAAM, Abdo RCC (2008) The effectiveness of MTA, calcium hydroxide and formocresol for pulpotomies in primary teeth. Int Endod J 41:547–555CrossRefPubMedGoogle Scholar
  21. 21.
    Tunç ES, Saroğlu I, Sari S, Günhan O (2006) The effect of sodium hypochlorite application on the success of calcium hydroxide pulpotomy in primary teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102:e22–e26CrossRefPubMedGoogle Scholar
  22. 22.
    Caicedo R, Abbott P, Alongi D, Alarcon M (2006) Clinical, radiographic and histological analysis of the effects of mineral trioxide aggregate used in direct pulp capping and pulpotomies of primary teeth. Aust Dent J 51:297–305CrossRefPubMedGoogle Scholar
  23. 23.
    Caprioglio C, Olivi G, Genovese MD (2011) Lasers in dental traumatology and low level laser therapy (LLLT). Eur Arch Paediatr Dent 12:79–84CrossRefPubMedGoogle Scholar
  24. 24.
    Ferreira ANS, Silveira L, Genovese WJ, Araújo VC, Frigo L, Mesquita RA, Guedes E (2006) Effect of GaAIAs laser on reactional dentinogenesis induction in human teeth. Photomed Laser Surg 24:358–365CrossRefPubMedGoogle Scholar
  25. 25.
    Godoy BM, Arana-Chavez VE, Núñez SC, Ribeiro MS (2007) Effects of low-power red laser on dentine–pulp interface after cavity preparation. An ultrastructural study. Arch Oral Biol 52:899–903CrossRefPubMedGoogle Scholar
  26. 26.
    Moosavi H, Maleknejad F, Sharifi M, Ahrari F (2014) A randomized clinical trial of the effect of low-level laser therapy before composite placement on postoperative sensitivity in class V restorations. Lasers Med Sci. doi: 10.1007/s10103-014-1565-9 Google Scholar
  27. 27.
    Waterhouse PJ, Nunn JH, Whitworth JM, Soames JV (2000) Primary molars pulp therapy: histological evaluation of failure. Int J Paediatr Dent 10:313–321CrossRefPubMedGoogle Scholar
  28. 28.
    Parirokh M, Asgary S, Eghbal MJ, Stowe S, Eslami B, Eskandarizade A, Shabahang S (2005) A comparative study of white and grey mineral trioxide aggregate as pulp capping agents in dog’s teeth. Dent Traumatol 21:150–154CrossRefPubMedGoogle Scholar
  29. 29.
    Dominguez MS, Witherspoon DE, Gutmann JL, Opperman LA (2003) Histological and scanning eletron microscopy assessment of various vital pulp-therapy materials. J Endod 29:324–333CrossRefPubMedGoogle Scholar
  30. 30.
    Chacko V, Kurikose S (2006) Human pulpal response to mineral trioxide aggregate (MTA): a histologic study. J Clin Pediatr Dent 30:203–209CrossRefPubMedGoogle Scholar
  31. 31.
    Accorinte ML, Loguercio AD, Reis A, Carneiro E, Grande RH, Murata SS, Holland R (2008) Response of human dental pulp capped with MTA and calcium hydroxide powder. Oper Dent 33:488–495CrossRefPubMedGoogle Scholar
  32. 32.
    Cannon M, Cernigliaro J, Vieira A, Percinoto C, Jurado R (2008) Effects of antibacterial agents on dental pulps of monkeys mechanically exposed and contaminated. J Clin Pediatr Dent 33:21–28CrossRefPubMedGoogle Scholar
  33. 33.
    Shayegan A, Petein M, Abbeele AV (2008) Beta-tricalcium phosphate, white mineral trioxide aggregate, white Portland cement, ferric sulfate, and formocresol used as pulpotomy agents in primary pig teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:536–542CrossRefPubMedGoogle Scholar
  34. 34.
    Toomarian L, Fekrazad R, Sharifi D, Baghaei M, Rahimi H, Eslami B (2008) Histopathological evaluation of pulpotomy with Er, Cr:YSGG laser vs formocresol. Lasers Med Sci 23:443–450CrossRefPubMedGoogle Scholar
  35. 35.
    Lima RV, Esmeraldo MR, de Carvalho MG, de Oliveira PT, de Carvalho RA, da Silva FL Jr, de Brito Costa EM (2011) Pulp repair after pulpotomy using different pulp capping agents: a comparative histologic analysis. Pediatr Dent 33:14–18PubMedGoogle Scholar
  36. 36.
    Haghgoo R, Abbasi F (2012) A histopathological comparison of pulpotomy with sodium hypochlorite and formocresol. Iran Endod J 7:60–62PubMedPubMedCentralGoogle Scholar
  37. 37.
    Srinivasan D, Jayanthi M (2011) Comparative evaluation of formocresol and mineral trioxide aggregate as pulpotomy agents in deciduous teeth. Indian J Dent Res 22:385–390CrossRefPubMedGoogle Scholar
  38. 38.
    Kurji ZA, Sigal MJ, Andrews P, Titley K (2011) A retrospective study of a modified 1-minute formocresol pulpotomy technique part 1: clinical and radiographic findings. Pediatr Dent 33:131–138PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Nádia Carolina Teixeira Marques
    • 1
  • Natalino Lourenço Neto
    • 1
  • Camila de Oliveira Rodini
    • 2
  • Ana Paula Fernandes
    • 1
  • Vivien Thiemy Sakai
    • 3
  • Maria Aparecida Andrade Moreira Machado
    • 1
  • Thais Marchini Oliveira
    • 1
  1. 1.Department of Pediatric Dentistry, Orthodontics and Public HealthBauru School of Dentistry - University of São PauloBauruBrazil
  2. 2.Department of Biology ScienceBauru School of Dentistry - University of São PauloBauruBrazil
  3. 3.Department of Clinics and SurgeryFederal University of AlfenasAlfenasBrazil

Personalised recommendations