Advertisement

Lasers in Medical Science

, Volume 30, Issue 1, pp 59–66 | Cite as

Effect of pre-irradiation with different doses, wavelengths, and application intervals of low-level laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats

  • Gianna Móes Albuquerque-Pontes
  • Rodolfo de Paula Vieira
  • Shaiane Silva Tomazoni
  • Cláudia Oliveira Caires
  • Victoria Nemeth
  • Adriane Aver Vanin
  • Larissa Aline Santos
  • Henrique Dantas Pinto
  • Rodrigo Labat Marcos
  • Jan Magnus Bjordal
  • Paulo de Tarso Camillo de Carvalho
  • Ernesto Cesar Pinto Leal-JuniorEmail author
Original Article

Abstract

Modulation of cytochrome c oxidase activity has been pointed as a possible key mechanism for low-level laser therapy (LLLT) in unhealthy biological tissues. But recent studies by our research group with LLLT in healthy muscles before exercise found delayed skeletal muscle fatigue development and improved biochemical status in muscle tissue. Therefore, the aim of this study was to evaluate effects of different LLLT doses and wavelengths in cytochrome c oxidase activity in intact skeletal muscle. In this animal experiment, we irradiated the tibialis anterior muscle of rats with three different LLLT doses (1, 3, and 10 J) and wavelengths (660, 830, and 905 nm) with 50 mW power output. After irradiation, the analyses of cytochrome c oxidase expression by immunohistochemistry were analyzed at 5, 10, 30 min and at 1, 2, 12, and 24 h. Our results show that LLLT increased (p < 0.05) cytochrome c oxidase expression mainly with the following wavelengths and doses: 660 nm with 1 J, 830 nm with 3 J, and 905 nm with 1 J at all time points. We conclude that LLLT can increase cytochrome c oxidase activity in intact skeletal muscle and that it contributes to our understanding of how LLLT can enhance performance and protect skeletal muscles against fatigue development and tissue damage. Our findings also lead us to think that the combined use of different wavelengths at the same time can enhance LLLT effects in skeletal muscle performance and other conditions, and it can represent a therapeutic advantage in clinical settings.

Keywords

Phototherapy Mitochondrial activity Muscular metabolism 

Notes

Acknowledgments

Professor Ernesto Cesar Pinto Leal-Junior would like to thank the São Paulo Research Foundation (FAPESP) research grant number 2010/52404-0. Professor Lucio Frigo would like to thank the FAPESP research grant number 2012/06832-5. Gianna Móes Albuquerque-Pontes would like to thank the FAPESP master degree scholarship number 2012/11385-8.

Conflict of interest

Professor Ernesto Cesar Pinto Leal-Junior receives research support from Multi Radiance Medical (Solon, OH, USA), a laser device manufacturer. The remaining authors declare that they have no conflict of interests.

References

  1. 1.
    Bjordal JM, Lopes-Martins RA, Iversen VV (2006) A randomised, placebo controlled trial of low level laser therapy for activated Achilles tendinitis with microdialysis measurement of peritendinous prostaglandin E2 concentrations. Br J Sports Med 40:76–80PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Chow RT, Heller GZ, Barnsley L (2006) The effect of 300 mW, 830 nm laser on chronic neck pain: a double-blind, randomized, placebo-controlled study. Pain 124:201–210PubMedCrossRefGoogle Scholar
  3. 3.
    Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM (2009) Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 374:1897–1908PubMedCrossRefGoogle Scholar
  4. 4.
    Huang YY, Chen AC, Carrol JD, Hamblim MR (2009) Biphasic dose response in low level light therapy. Dose Response 7:358–383PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Goldman JA, Chiapella J, Casey H, Bass N, Graham J, McClatchey W, Dronavalli RV, Brown R, Bennett WJ, Miller SB, Wilson CH, Pearson B, Haun C, Persinski L, Huey H, Muckerheide M (1980) Laser therapy of rheumatoid arthritis. Lasers Surg Med 1:93–101PubMedCrossRefGoogle Scholar
  6. 6.
    Hegedus B, Viharos L, Gervain M, Gálfi M (2009) The effect of low-level laser in knee osteoarthritis: a double-blind, randomized, placebo-controlled trial. Photomed Laser Surg 27:577–584PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Stergioulas A, Stergioula M, Aarskog R, Lopes-Martins RA, Bjordal JM (2008) Effects of low-level laser therapy and eccentric exercises in the treatment of recreational athletes with chronic Achilles tendinopathy. Am J Sports Med 36:881–887PubMedCrossRefGoogle Scholar
  8. 8.
    Ozcelik O, Cenk Haytac M, Kunin A, Seydaoglu G (2008) Improved wound healing by low-level laser irradiation after gingivectomy operations: a controlled clinical pilot study. J Clin Periodontol 35:250–254PubMedCrossRefGoogle Scholar
  9. 9.
    Schubert MM, Eduardo FP, Guthrie KA, Franquin JC, Bensadoun RJ, Migliorati CA, Lloid CM, Eduardo CP, Walter NF, Marques MM, Hamdi M (2007) A phase III randomized double-blind placebo-controlled clinical trial to determine the efficacy of low level laser therapy for the prevention of oral mucositis in patients undergoing hematopoietic cell transplantation. Support Care Cancer 15:1145–1154PubMedCrossRefGoogle Scholar
  10. 10.
    Basford JR, Sheffield CG, Harmsen WS (1999) Laser therapy: a randomized, controlled trial of the effects of low-intensity Nd:YAG laser irradiation on musculoskeletal back pain. Arch Phys Med Rehabil 80:647–652PubMedCrossRefGoogle Scholar
  11. 11.
    Gur A, Sarac AJ, Cevik R, Altindag O, Sarac S (2004) Efficacy of 904 nm gallium arsenide low level laser therapy in the management of chronic myofascial pain in the neck: a double-blind and randomize-controlled trial. Lasers Surg Med 35:229–235PubMedCrossRefGoogle Scholar
  12. 12.
    Rochkind S, Leider-Trejo L, Nissan M, Shamir MH, Kharenko O, Alon M (2007) Efficacy of 780-nm laser phototherapy on peripheral nerve regeneration after neurotube reconstruction procedure (double-blind randomized study). Photomed Laser Surg 25:137–143PubMedCrossRefGoogle Scholar
  13. 13.
    Lampl Y, Zivin JA, Fisher M, Lew R, Welin L, Dahlof B, Borenstein P, Andersson B, Perez J, Caparo C, Ilic S, Oron U (2007) Infrared laser therapy for ischemic stroke: a new treatment strategy. Results of the neurothera effectiveness and safety trial-1 (NEST-1). Stroke 38:1843–1849PubMedCrossRefGoogle Scholar
  14. 14.
    Leal Junior EC, Lopes-Martins RA, de Almeida P, Ramos L, Iversen VV, Bjordal JM (2010) Effect of low-level laser therapy (GaAs 904 nm) in skeletal muscle fatigue and biochemical markers of muscle damage in rats. Eur J Appl Physiol 108:1083–1088PubMedCrossRefGoogle Scholar
  15. 15.
    Leal Junior EC, Lopes-Martins RA, Dalan F, Ferrari M, Sbabo FM, Generosi RA, Baroni BM, Penna SC, Iversen VV, Bjordal JM (2008) Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg 26:419–424PubMedCrossRefGoogle Scholar
  16. 16.
    Leal Junior EC, Lopes-Martins RA, Vanin AA, Baroni BM, Grosselli D, De Marchi T, Iversen VV, Bjordal JM (2009) Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci 24:425–431PubMedCrossRefGoogle Scholar
  17. 17.
    Leal Junior EC, Lopes-Martins RA, Rossi RP, De Marchi T, Baroni BM, de Godoi V, Marcos RL, Ramos L, Bjordal JM (2009) Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med 41:572–577PubMedCrossRefGoogle Scholar
  18. 18.
    Leal Junior EC, Lopes-Martins RA, Frigo L, De Marchi T, Rossi RP, de Godoi V, Tomazoni SS, da Silva DP, Basso M, Lotti Filho P, Corsetti FV, Iversen VV, Bjordal JM (2010) Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to post-exercise recovery. J Orthop Sports Phys Ther 40:524–532PubMedCrossRefGoogle Scholar
  19. 19.
    Leal Junior EC, Lopes-Martins RA, Baroni BM, De Marchi T, Rossi RP, Grosselli D, Generosi RA, de Godoi V, Basso M, Mancalossi JL, Bjordal JM (2009) Comparison between single-diode low-level laser therapy (LLLT) and LED multi-diode (cluster) therapy (LEDT) applications before high-intensity exercise. Photomed Laser Surg 27:617–623PubMedCrossRefGoogle Scholar
  20. 20.
    Leal Junior EC, Lopes-Martins RA, Baroni BM, De Marchi T, Taufer D, Manfro DS, Rech M, Danna V, Grosselli D, Generosi RA, Marcos RL, Ramos L, Bjordal JM (2009) Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers Med Sci 24:857–863PubMedCrossRefGoogle Scholar
  21. 21.
    Hayworth CR, Rojas JC, Padilla E, Holmes GM, Sheridan EC, Gonzalez-Lima F (2010) In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle. Photochem Photobiol 86:673–680PubMedCrossRefGoogle Scholar
  22. 22.
    Santos LA, Marcos RL, Tomazoni SS, Vanin AA, Antonialli FC, Grandinetti VD, Albuquerque-Pontes GM, de Paiva PR, Lopes-Martins RA, de Carvalho PD, Bjordal JM, Leal-Junior EC (2014) Effects of pre-irradiation of low-level laser therapy with different doses and wavelengths in skeletal muscle performance, fatigue, and skeletal muscle damage induced by tetanic contractions in rats. Lasers Med Sci. doi: 10.1007/s10103-014-1560-1
  23. 23.
    Ferraresi C, Oliveira TB, Zafalon LO, Reiff RB, Baldissera V, Perez SE, Júnior EM, Parizotto NA (2011) Effects of low laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci 26:349–358PubMedCrossRefGoogle Scholar
  24. 24.
    Bakeeva LE, Manteifel VM, Rodichev EB, Karu TI (1993) Formation of gigantic mitochondria in human blood lymphocytes under the effects oh an He-Ne laser light. Mol Biol (Mosk) 27:608–617Google Scholar
  25. 25.
    Manteifel VM, Karu TI (2005) Structure of mitochondria and activity of their respiratory chain in subsequent generations of yeast cells exposed to He-Ne laser light. Izv Akad Nauk Ser Biol 6:672–683PubMedGoogle Scholar
  26. 26.
    Rennó AC, Toma RL, Feitosa SM, Fernandes K, Bossini OS, de Oliveira P, Parizotto N, Ribeiro DA (2011) Comparative effects of low-intensity pulsed ultrasound and low-level laser therapy on injured skeletal muscle. Photomed Laser Surg 29:5–10PubMedCrossRefGoogle Scholar
  27. 27.
    Silveira PC, Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R (2009) Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B 95:89–92PubMedCrossRefGoogle Scholar
  28. 28.
    Leal-Junior EC, Vanin AA, Miranda EF, de Carvalho PD, Dal Corso S, Bjordal JM (2013) Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci [Epub ahead of print]Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Gianna Móes Albuquerque-Pontes
    • 1
  • Rodolfo de Paula Vieira
    • 2
    • 3
  • Shaiane Silva Tomazoni
    • 4
  • Cláudia Oliveira Caires
    • 1
  • Victoria Nemeth
    • 2
  • Adriane Aver Vanin
    • 2
  • Larissa Aline Santos
    • 2
  • Henrique Dantas Pinto
    • 2
  • Rodrigo Labat Marcos
    • 4
  • Jan Magnus Bjordal
    • 5
    • 6
  • Paulo de Tarso Camillo de Carvalho
    • 1
    • 2
  • Ernesto Cesar Pinto Leal-Junior
    • 1
    • 2
    Email author
  1. 1.Postgraduate Program in Biophotonics Applied to Health SciencesUniversidade Nove de Julho (UNINOVE)São PauloBrazil
  2. 2.Postgraduate Program in Rehabilitation SciencesUniversidade Nove de Julho (UNINOVE)São PauloBrazil
  3. 3.Postgraduate Program in MedicineUniversidade Nove de Julho (UNINOVE)São PauloBrazil
  4. 4.Laboratory of Pharmacology and Experimental Therapeutics, Department of PharmacologyUniversity of São PauloSão PauloBrazil
  5. 5.Physiotherapy Research Group, Department of Global Public Health, Faculty of Medicine and DentistryUniversity of BergenBergenNorway
  6. 6.Centre for Knowledge-Based PracticeBergen University CollegeBergenNorway

Personalised recommendations