Advertisement

Lasers in Medical Science

, Volume 29, Issue 5, pp 1617–1626 | Cite as

Effects of pre-irradiation of low-level laser therapy with different doses and wavelengths in skeletal muscle performance, fatigue, and skeletal muscle damage induced by tetanic contractions in rats

  • Larissa Aline Santos
  • Rodrigo Labat Marcos
  • Shaiane Silva Tomazoni
  • Adriane Aver Vanin
  • Fernanda Colella Antonialli
  • Vanessa dos Santos Grandinetti
  • Gianna Móes Albuquerque-Pontes
  • Paulo Roberto Vicente de Paiva
  • Rodrigo Álvaro Brandão Lopes-Martins
  • Paulo de Tarso Camillo de Carvalho
  • Jan Magnus Bjordal
  • Ernesto Cesar Pinto Leal-JuniorEmail author
Original Article

Abstract

This study aimed to evaluate the effects of low-level laser therapy (LLLT) immediately before tetanic contractions in skeletal muscle fatigue development and possible tissue damage. Male Wistar rats were divided into two control groups and nine active LLLT groups receiving one of three different laser doses (1, 3, and 10 J) with three different wavelengths (660, 830, and 905 nm) before six tetanic contractions induced by electrical stimulation. Skeletal muscle fatigue development was defined by the percentage (%) of the initial force of each contraction and time until 50 % decay of initial force, while total work was calculated for all six contractions combined. Blood and muscle samples were taken immediately after the sixth contraction. Several LLLT doses showed some positive effects on peak force and time to decay for one or more contractions, but in terms of total work, only 3 J/660 nm and 1 J/905 nm wavelengths prevented significantly (p < 0.05) the development of skeletal muscle fatigue. All doses with wavelengths of 905 nm but only the dose of 1 J with 660 nm wavelength decreased creatine kinase (CK) activity (p < 0.05). Qualitative assessment of morphology revealed lesser tissue damage in most LLLT-treated groups, with doses of 1–3 J/660 nm and 1, 3, and 10 J/905 nm providing the best results. Optimal doses of LLLT significantly delayed the development skeletal muscle performance and protected skeletal muscle tissue against damage. Our findings also demonstrate that optimal doses are partly wavelength specific and, consequently, must be differentiated to obtain optimal effects on development of skeletal muscle fatigue and tissue preservation. Our findings also lead us to think that the combined use of wavelengths at the same time can represent a therapeutic advantage in clinical settings.

Keywords

LLLT Skeletal muscle performance Skeletal muscle recovery Sports 

Notes

Acknowledgments

Professor Ernesto Cesar Pinto Leal-Junior would like to thank São Paulo Research Foundation (FAPESP) for research grant number 2010/52404-0. Professor Lucio Frigo would like to thank São Paulo Research Foundation (FAPESP) for research grant number 2012/06832-5. Larissa Aline Santos would like to thank São Paulo Research Foundation (FAPESP) for the master degree scholarship grant number 2012/04295-2.

Conflict of interest

Professor Ernesto Cesar Pinto Leal-Junior receives research support from Multi Radiance Medical (Solon, OH, USA), a laser device manufacturer. Multi Radiance Medical had no role in the planning of this experiment, and the laser device used was not theirs. They had no influence on study design, data collection and analysis, decision to publish, or preparation of the manuscript. The remaining authors declare that they have no conflict of interests.

References

  1. 1.
    Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332PubMedCrossRefGoogle Scholar
  2. 2.
    Ament W, Verkerke GJ (2009) Exercise and fatigue. Sports Med 39:389–422PubMedCrossRefGoogle Scholar
  3. 3.
    Weir JP, Beck TW, Cramer JT, Housh TJ (2006) Is fatigue all in your head? A critical review of the central governor model. Br J Sports Med 40:573–586PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Cheung K, Hume P, Maxwell L (2003) Delayed onset muscle soreness: treatment strategies and performance factors. Sports Med 33:145–164PubMedCrossRefGoogle Scholar
  5. 5.
    Clarkson PM, Hubal MJ (2002) Exercise-induced muscle damage. Am J Phys Med Rehabil 81:S52–S69PubMedCrossRefGoogle Scholar
  6. 6.
    Szumilak D, Sulowicz W, Walatek B (1998) Rhabdomyolysis: clinical features, causes, complications and treatment. Przegl Lek 55:274–279PubMedGoogle Scholar
  7. 7.
    Sayers SP, Clarkson PM (2003) Short-term immobilization after eccentric exercise. Part II: Creatine kinase and myoglobin. Med Sci Sports Exerc 35:762–768PubMedCrossRefGoogle Scholar
  8. 8.
    Chevion S, Moran DS, Heled Y, Shani Y, Regev G, Abbou B, Berenshtein E, Stadtman ER, Epstein Y (2003) Plasma antioxidant status and cell injury after severe physical exercise. Proc Natl Acad Sci U S A 100:5119–5123PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Brancaccio P, Maffulli N, Limongelli FM (2007) Creatine kinase monitoring in sport medicine. Br Med Bull 81–82:209–230PubMedCrossRefGoogle Scholar
  10. 10.
    Dykman KD, Tone C, Ford C, Dykman RA (1998) The effects of nutritional supplements on the symptoms of fibromyalgia and chronic fatigue syndrome. Integr Physiol Behav Sci 33:61–71PubMedCrossRefGoogle Scholar
  11. 11.
    Werbach MR (2000) Nutritional strategies for treating chronic fatigue syndrome. Altern Med Rev 5:93–108PubMedGoogle Scholar
  12. 12.
    Kay D, Marino FE (2000) Fluid ingestion and exercise hyperthermia: implications for performance, thermoregulation, metabolism and the development of fatigue. J Sports Sci 18:71–82PubMedCrossRefGoogle Scholar
  13. 13.
    Coyle EF (2004) Fluid and fuel intake during exercise. J Sports Sci 22:39–55PubMedCrossRefGoogle Scholar
  14. 14.
    Thompson D, Williams C, Kingsley M, Nicholas CW, Lakomy HK, McArdle F, Jackson MJ (2001) Muscle soreness and damage parameters after prolonged intermittent shuttle-running following acute vitamin C supplementation. Int J Sports Med 22:68–75PubMedCrossRefGoogle Scholar
  15. 15.
    Kendall KL, Smith AE, Graef JL, Fukuda DH, Moon JR, Beck TW, Cramer JT, Stout JR (2009) Effects of four weeks of high-intensity interval training and creatine supplementation on critical power and anaerobic working capacity in college-aged men. J Strength Cond Res 23:1663–1669PubMedCrossRefGoogle Scholar
  16. 16.
    Meneguello MO, Mendonca JR, Lancha AH Jr, Costa Rosa LF (2003) Effect of arginine, ornithine and citrulline supplementation upon performance and metabolism of trained rats. Cell Biochem Funct 21:85–91PubMedCrossRefGoogle Scholar
  17. 17.
    Barnett A (2006) Using recovery modalities between training sessions in elite athletes: does it help? Sports Med 36:781–796PubMedCrossRefGoogle Scholar
  18. 18.
    Huang YY, Chen AC, Carrol JD, Hamblim MR (2009) Biphasic dose response in low level light therapy. Dose Response 7:358–383PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Goldman JA, Chiapella J, Casey H, Bass N, Graham J, McClatchey W, Dronavalli RV, Brown R, Bennett WJ, Miller SB, Wilson CH, Pearson B, Haun C, Persinski L, Huey H, Muckerheide M (1980) Laser therapy of rheumatoid arthritis. Lasers Surg Med 1:93–101PubMedCrossRefGoogle Scholar
  20. 20.
    Hegedus B, Viharos L, Gervain M, Gálfi M (2009) The effect of low-level laser in knee osteoarthritis: a double-blind, randomized, placebo-controlled trial. Photomed Laser Surg 27:577–584PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Bjordal JM, Lopes-Martins RA, Iversen VV (2006) A randomised, placebo controlled trial of low level laser therapy for activated Achilles tendinitis with microdialysis measurement of peritendinous prostaglandin E2 concentrations. Br J Sports Med 40:76–80PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Stergioulas A, Stergioula M, Aarskog R, Lopes-Martins RA, Bjordal JM (2008) Effects of low-level laser therapy and eccentric exercises in the treatment of recreational athletes with chronic Achilles tendinopathy. Am J Sports Med 36:881–887PubMedCrossRefGoogle Scholar
  23. 23.
    Basford JR, Sheffield CG, Harmsen WS (1999) Laser therapy: a randomized, controlled trial of the effects of low-intensity Nd:YAG laser irradiation on musculoskeletal back pain. Arch Phys Med Rehabil 80:647–652PubMedCrossRefGoogle Scholar
  24. 24.
    Chow RT, Heller GZ, Barnsley L (2006) The effect of 300 mW, 830 nm laser on chronic neck pain: a double-blind, randomized, placebo-controlled study. Pain 124:201–210PubMedCrossRefGoogle Scholar
  25. 25.
    Leal Junior EC, Lopes-Martins RA, Dalan F, Ferrari M, Sbabo FM, Generosi RA, Baroni BM, Penna SC, Iversen VV, Bjordal JM (2008) Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg 26:419–424PubMedCrossRefGoogle Scholar
  26. 26.
    Leal Junior EC, Lopes-Martins RA, Vanin AA, Baroni BM, Grosselli D, De Marchi T, Iversen VV, Bjordal JM (2009) Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci 24:425–431PubMedCrossRefGoogle Scholar
  27. 27.
    Leal Junior EC, Lopes-Martins RA, Rossi RP, De Marchi T, Baroni BM, de Godoi V, Marcos RL, Ramos L, Bjordal JM (2009) Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med 41:572–577Google Scholar
  28. 28.
    Leal Junior EC, Lopes-Martins RA, de Almeida P, Ramos L, Iversen VV, Bjordal JM (2010) Effect of low-level laser therapy (GaAs 904 nm) in skeletal muscle fatigue and biochemical markers of muscle damage in rats. Eur J Appl Physiol 108:1083–1088PubMedCrossRefGoogle Scholar
  29. 29.
    Leal Junior EC, Lopes-Martins RA, Frigo L, De Marchi T, Rossi RP, de Godoi V, Tomazoni SS, da Silva DP, Basso M, Lotti Filho P, Corsetti FV, Iversen VV, Bjordal JM (2010) Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to post-exercise recovery. J Orthop Sports Phys Ther 40:524–532Google Scholar
  30. 30.
    de Almeida P, Lopes-Martins RÁ, Tomazoni SS, Silva JA Jr, de Carvalho PT, Bjordal JM, Leal Junior EC (2011) Low-level laser therapy improves skeletal muscle performance, decreases skeletal muscle damage and modulates mRNA expression of COX-1 and COX-2 in a dose-dependent manner. Photochem Photobiol 87:1159–1163PubMedCrossRefGoogle Scholar
  31. 31.
    de Almeida P, Lopes-Martins RA, De Marchi T, Tomazoni SS, Albertini R, Corrêa JC, Rossi RP, Machado GP, da Silva DP, Bjordal JM, Leal Junior EC (2012) Red (660 nm) and infrared (830 nm) low-level laser therapy in skeletal muscle fatigue in humans: what is better? Lasers Med Sci 27:453–458PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    De Marchi T, Leal Junior EC, Bortoli C, Tomazoni SS, Lopes-Martins RA, Salvador M (2012) Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci 27:231–236PubMedCrossRefGoogle Scholar
  33. 33.
    Leal Junior EC, Lopes-Martins RA, Baroni BM, De Marchi T, Rossi RP, Grosselli D, Generosi RA, de Godoi V, Basso M, Mancalossi JL, Bjordal JM (2009) Comparison between single-diode low-level laser therapy (LLLT) and LED multi-diode (cluster) therapy (LEDT) applications before high-intensity exercise. Photomed Laser Surg 27:617–623Google Scholar
  34. 34.
    Leal Junior EC, Lopes-Martins RA, Baroni BM, De Marchi T, Taufer D, Manfro DS, Rech M, Danna V, Grosselli D, Generosi RA, Marcos RL, Ramos L, Bjordal JM (2009) Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers Med Sci 24:857–863PubMedCrossRefGoogle Scholar
  35. 35.
    Tullberg M, Alstergren PJ, Ernberg MM (2003) Effects of low-power laser exposure on masseter muscle pain and microcirculation. Pain 105:89–96PubMedCrossRefGoogle Scholar
  36. 36.
    Silveira PC, Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R (2009) Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B 95:89–92PubMedCrossRefGoogle Scholar
  37. 37.
    Xu X, Zhao X, Liu TC, Pan H (2008) Low-intensity laser irradiation improves the mitochondrial dysfunction of C2C12 induced by electrical stimulation. Photomed Laser Surg 26:197–202PubMedCrossRefGoogle Scholar
  38. 38.
    Avni D, Levkovitz S, Maltz L, Oron U (2005) Protection of skeletal muscles from ischemic injury: low-level laser therapy increases antioxidant activity. Photomed Laser Surg 23:273–277PubMedCrossRefGoogle Scholar
  39. 39.
    Rizzi CF, Mauriz JL, Freitas Correa DS, Moreira AJ, Zettler CG, Filippin LI, Marroni NP, González-Gallego J (2006) Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. Lasers Surg Med 38:704–713PubMedCrossRefGoogle Scholar
  40. 40.
    Hayworth CR, Rojas JC, Padilla E, Holmes GM, Sheridan EC, Gonzalez-Lima F (2010) In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle. Photochem Photobiol 86:673–680PubMedCrossRefGoogle Scholar
  41. 41.
    Leal Junior EC, de Godoi V, Mancalossi JL, Rossi RP, De Marchi T, Parente M, Grosselli D, Generosi RA, Basso M, Frigo L, Tomazoni SS, Bjordal JM, Lopes-Martins RA (2011) Comparison between cold water immersion therapy (CWIT) and light emitting diode therapy (LEDT) in short-term skeletal muscle recovery after high-intensity exercise in athletes—preliminary results. Lasers Med Sci 26:493–501Google Scholar
  42. 42.
    Leal EC Jr, Vanin AA, Miranda EF, de Carvalho PD, Dal Corso S, Bjordal JM (2014) Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci. doi: 10.1007/s10103-013-1465-4

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Larissa Aline Santos
    • 1
  • Rodrigo Labat Marcos
    • 2
  • Shaiane Silva Tomazoni
    • 3
  • Adriane Aver Vanin
    • 1
  • Fernanda Colella Antonialli
    • 1
  • Vanessa dos Santos Grandinetti
    • 2
  • Gianna Móes Albuquerque-Pontes
    • 2
  • Paulo Roberto Vicente de Paiva
    • 2
  • Rodrigo Álvaro Brandão Lopes-Martins
    • 3
  • Paulo de Tarso Camillo de Carvalho
    • 1
    • 2
  • Jan Magnus Bjordal
    • 4
    • 5
  • Ernesto Cesar Pinto Leal-Junior
    • 1
    • 2
    Email author
  1. 1.Postgraduate Program in Rehabilitation SciencesUniversidade Nove de Julho (UNINOVE)São PauloBrazil
  2. 2.Postgraduate Program in Biophotonics Applied to Health SciencesUniversidade Nove de Julho (UNINOVE)São PauloBrazil
  3. 3.Department of PharmacologyUniversity of São PauloSão PauloBrazil
  4. 4.Physiotherapy Research Group, Department of Global Public Health, Faculty of Medicine and DentistryUniversity of BergenBergenNorway
  5. 5.Centre for Knowledge-Based PracticeBergen University CollegeBergenNorway

Personalised recommendations