Advertisement

Lasers in Medical Science

, Volume 29, Issue 2, pp 405–422 | Cite as

Endovascular laser–tissue interactions and biological responses in relation to endovenous laser therapy

  • Michal Heger
  • Rowan F. van Golen
  • Mans Broekgaarden
  • Renate R. van den Bos
  • H. A. Martino Neumann
  • Thomas M. van Gulik
  • Martin J. C. van Gemert
Original Article

Abstract

Endovenous laser treatment (ELT) has evolved into a frequently employed modality for the treatment of leg varicose veins. Due to the very high complete response rates, minimal complications and side effects, and the possibility to monitor therapeutic outcome noninvasively by duplex ultrasound, a considerable amount of reports have been published on clinical and translational studies, whereas disproportionally few studies have been performed to elucidate the molecular and cellular basis for post-ELT vessel obliteration. Consequently, this review addresses the putative molecular and cellular mechanisms responsible for varicose vein obliteration following laser irradiation in the context of endovenous laser–tissue interactions. First, the histological profile of laser-treated varicose veins is summarized, and an account is given of the temporal and spatial dynamics of cells involved in inflammation and remodeling in the heat-affected vein segment. Inasmuch as thrombotic occlusion of the venous lumen blocks circulatory access to the affected vessel segment and thermal damage in the vascular wall causes most cells to die, the majority of cells involved in inflammation and remodeling have to be recruited. Second, the (possible) biochemical triggers for the chemotactic attraction of immune cells and fibroblasts are identified, comprising (1) thermal coagula, (2) thrombi, (3) dead and dying cells in the vein wall, and (4) thermally denatured extracellular matrix proteins in the vein wall. The molecular biology underlying the chemotactic signaling and subsequent obliterative remodeling is elucidated. Finally, the relative contribution of every biochemical trigger to obliterative remodeling is addressed.

Keywords

Endovenous laser ablation Varicose veins Great saphenous vein Tissue remodeling Venous thrombus organization Fibrosis Inflammation Cytokines and chemokines Damage-associated molecular patterns Innate immune response Phagocytosis 

Abbreviations

ATP

Adenosine triphosphate

CCL

CC chemokine ligand

CXCL

Chemokine (C–X–C motif) ligand

DAMP

Damage-associated molecular pattern

DNA

Deoxyribonucleic acid

EC

Endothelial cell

ECM

Extracellular matrix

ELT

Endovenous laser ablation

ERK

Extracellular-signal-regulated kinase

FGF

Fibroblast growth factor

HMGB-1

High-mobility group box 1

HSP

Heat shock protein

ICAM

Intercellular adhesion molecule

IL

Interleukin

JNK

c-Jun N-terminal kinase

MCP

Monocyte chemotactic protein

MIP

Macrophage inflammatory protein

MMP

Matrix metalloproteinase

MSR

Macrophage scavenging receptor

PDGF

Platelet-derived growth factor

PSGL

P-selectin glycoprotein ligand

RAGE

Receptor for advanced glycation end products

RNA

Ribonucleic acid

SMC

Smooth muscle cell

SRC

The human orthologue of the Src (gene), encoding v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog

TGF

Transforming growth factor

TIMP

Tissue inhibitor of metalloproteinases

TLR

Toll-like receptor

TNF

Tumor necrosis factor

uPA

Urokinase-type plasminogen activator

Notes

Acknowledgements

MH is sponsored by grants from the Dutch Anti-Cancer Foundation in Amsterdam (Stichting Nationaal Fonds Tegen Kanker), the Phospholipid Research Center in Heidelberg, the Nijbakker-Morra Foundation in Leiden, and the Stichting Technologische Wetenschap. RFvG is sponsored by an AMC Scholarship grant.

References

  1. 1.
    Nijsten T, van den Bos RR, Goldman MP, Kockaert MA, Proebstle TM, Rabe E, Sadick NS, Weiss RA, Neumann MH (2009) Minimally invasive techniques in the treatment of saphenous varicose veins. J Am Acad Dermatol 60:110–119PubMedGoogle Scholar
  2. 2.
    van den Bos RR, Kockaert MA, Neumann HA, Nijsten T (2008) Technical review of endovenous laser therapy for varicose veins. Eur J Vasc Endovasc Surg 35:88–95PubMedGoogle Scholar
  3. 3.
    van den Bos RR, Neumann M, De Roos KP, Nijsten T (2009) Endovenous laser ablation-induced complications: review of the literature and new cases. Dermatol Surg 35:1206–1214Google Scholar
  4. 4.
    Myers K, Fris R, Jolley D (2006) Treatment of varicose veins by endovenous laser therapy: assessment of results by ultrasound surveillance. Med J Aust 185:199–202PubMedGoogle Scholar
  5. 5.
    Fan CM, Rox-Anderson R (2008) Endovenous laser ablation: mechanism of action. Phlebology 23:206–213PubMedGoogle Scholar
  6. 6.
    Vuylsteke ME, Mordon SR (2012) Endovenous laser ablation: a review of mechanisms of action. Ann Vasc Surg 26:424–433PubMedGoogle Scholar
  7. 7.
    Schmedt CG, Sroka R, Steckmeier S, Meissner OA, Babaryka G, Hunger K, Ruppert V, Sadeghi-Azandaryani M, Steckmeier BM (2006) Investigation on radiofrequency and laser (980 nm) effects after endoluminal treatment of saphenous vein insufficiency in an ex-vivo model. Eur J Vasc Endovasc Surg 32:318–325PubMedGoogle Scholar
  8. 8.
    van den Bos RR, Kockaert MA, Martino Neumann HA, Bremmer RH, Nijsten T, van Gemert MJ (2009) Heat conduction from the exceedingly hot fiber tip contributes to the endovenous laser ablation of varicose veins. Lasers Med Sci 24:247–251PubMedGoogle Scholar
  9. 9.
    Disselhoff BC, Rem AI, Verdaasdonk RM, Kinderen DJ, Moll FL (2008) Endovenous laser ablation: an experimental study on the mechanism of action. Phlebology 23:69–76PubMedGoogle Scholar
  10. 10.
    Proebstle TM, Sandhofer M, Kargl A, Gul D, Rother W, Knop J, Lehr HA (2002) Thermal damage of the inner vein wall during endovenous laser treatment: key role of energy absorption by intravascular blood. Dermatol Surg 28:596–600PubMedGoogle Scholar
  11. 11.
    Proebstle TM, Lehr HA, Kargl A, Espinola-Klein C, Rother W, Bethge S, Knop J (2002) Endovenous treatment of the greater saphenous vein with a 940-nm diode laser: thrombotic occlusion after endoluminal thermal damage by laser-generated steam bubbles. J Vasc Surg 35:729–736PubMedGoogle Scholar
  12. 12.
    Theivacumar NS, Dellagrammaticas D, Beale RJ, Mavor AI, Gough MJ (2008) Factors influencing the effectiveness of endovenous laser ablation (EVLA) in the treatment of great saphenous vein reflux. Eur J Vasc Endovasc Surg 35:119–123PubMedGoogle Scholar
  13. 13.
    Heger M (2013) Thrombosis versus thermal coagulum formation as a result of endovenous laser therapy: biochemistry versus photophysics, PhlebologyGoogle Scholar
  14. 14.
    Bush RG, Shamma HN, Hammond K (2008) Histological changes occurring after endoluminal ablation with two diode lasers (940 and 1319 nm) from acute changes to 4 months. Lasers Surg Med 40:676–679PubMedGoogle Scholar
  15. 15.
    Proebstle TM, Gul D, Lehr HA, Kargl A, Knop J (2003) Infrequent early recanalization of greater saphenous vein after endovenous laser treatment. J Vasc Surg 38:511–516PubMedGoogle Scholar
  16. 16.
    Vuylsteke M, Van DJ, Roelens J, De BT, Mordon S (2009) Endovenous laser treatment: a morphological study in an animal model. Phlebology 24:166–175PubMedGoogle Scholar
  17. 17.
    Vuylsteke M, Van DJ, Roelens J, De BT, Mordon S, Fourneau I (2010) Intraluminal fibre-tip centring can improve endovenous laser ablation: a histological study. Eur J Vasc Endovasc Surg 40:110–116PubMedGoogle Scholar
  18. 18.
    Oh CK, Jung DS, Jang HS, Kwon KS (2003) Endovenous laser surgery of the incompetent greater saphenous vein with a 980-nm diode laser. Dermatol Surg 29:1135–1140PubMedGoogle Scholar
  19. 19.
    Proebstle TM, Moehler T, Herdemann S (2006) Reduced recanalization rates of the great saphenous vein after endovenous laser treatment with increased energy dosing: definition of a threshold for the endovenous fluence equivalent. J Vasc Surg 44:834–839PubMedGoogle Scholar
  20. 20.
    Corcos L, Dini S, De AD, Marangoni O, Ferlaino E, Procacci T, Spina T, Dini M (2005) The immediate effects of endovenous diode 808-nm laser in the greater saphenous vein: morphologic study and clinical implications. J Vasc Surg 41:1018–1024PubMedGoogle Scholar
  21. 21.
    der Kinderen DJ, Disselhoff BC, Koten JW, de Bruin PC, Seldenrijk CA, Moll FL (2009) Histopathologic studies of the below-the-knee great saphenous vein after endovenous laser ablation. Dermatol Surg 35:1985–1988Google Scholar
  22. 22.
    Vuylsteke ME, Martinelli T, Van DJ, Roelens J, Mordon S, Fourneau I (2011) Endovenous laser ablation: the role of intraluminal blood. Eur J Vasc Endovasc Surg 42:120–126PubMedGoogle Scholar
  23. 23.
    Samouillan V, Dandurand J, Lacabanne C, Stella A, Gargiulo M, Degani A, Gandaglia A, Spina M (2012) Analysis of the molecular mobility of collagen and elastin in safe, atheromatous and aneurysmal aortas. Pathol Biol (Paris) 60:58–65Google Scholar
  24. 24.
    Gorisch W, Boergen KP (1982) Heat-induced contraction of blood vessels. Lasers Surg Med 2:1–13PubMedGoogle Scholar
  25. 25.
    Lin MG, Yang TL, Chiang CT, Kao HC, Lee JN, Lo W, Jee SH, Chen YF, Dong CY, Lin SJ (2006) Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy, J Biomed Opt 11:064006Google Scholar
  26. 26.
    Weiss RA (2002) Comparison of endovenous radiofrequency versus 810 nm diode laser occlusion of large veins in an animal model. Dermatol Surg 28:56–61PubMedGoogle Scholar
  27. 27.
    Viarengo LM, Poterio-Filho J, Poterio GM, Menezes FH, Meirelles GV (2007) Endovenous laser treatment for varicose veins in patients with active ulcers: measurement of intravenous and perivenous temperatures during the procedure. Dermatol Surg 33:1234–1242PubMedGoogle Scholar
  28. 28.
    Mahdavian DB, van der Veer WM, van Egmond M, Niessen FB, Beelen RH (2011) Macrophages in skin injury and repair. Immunobiology 216:753–762Google Scholar
  29. 29.
    McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, Waterhouse CC, Beck PL, Muruve DA, Kubes P (2010) Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330:362–366PubMedGoogle Scholar
  30. 30.
    Kumar V, Sharma A (2010) Neutrophils: Cinderella of innate immune system. Int Immunopharmacol 10:1325–1334PubMedGoogle Scholar
  31. 31.
    Heger M, Beek JF, Moldovan NI, van der Horst CM, van Gemert MJ (2005) Towards optimization of selective photothermolysis: prothrombotic pharmaceutical agents as potential adjuvants in laser treatment of port wine stains. A theoretical study. Thromb Haemost 93:242–256PubMedGoogle Scholar
  32. 32.
    Heger M, Salles II, Bezemer R, Cloos MA, Mordon SR, Begu S, Deckmyn H, Beek JF (2011) Laser-induced primary and secondary hemostasis dynamics and mechanisms in relation to selective photothermolysis of port wine stains. J Dermatol Sci 63:139–147PubMedGoogle Scholar
  33. 33.
    Newton PM, Watson JA, Wolowacz RG, Wood EJ (2004) Macrophages restrain contraction of an in vitro wound healing model. Inflammation 28:207–214PubMedGoogle Scholar
  34. 34.
    Miller FJ (2001) Adventitial fibroblasts: backstage journeymen. Arterioscler Thromb Vasc Biol 21:722–723PubMedGoogle Scholar
  35. 35.
    Shi Y, O'Brien JE, Fard A, Mannion JD, Wang D, Zalewski A (1996) Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation 94:1655–1664PubMedGoogle Scholar
  36. 36.
    Li G, Chen SJ, Oparil S, Chen YF, Thompson JA (2000) Direct in vivo evidence demonstrating neointimal migration of adventitial fibroblasts after balloon injury of rat carotid arteries. Circulation 101:1362–1365PubMedGoogle Scholar
  37. 37.
    Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10:826–837PubMedCentralPubMedGoogle Scholar
  38. 38.
    Sugimoto N, Shido O, Matsuzaki K, Ohno-Shosaku T, Hitomi Y, Tanaka M, Sawaki T, Fujita Y, Kawanami T, Masaki Y, Okazaki T, Nakamura H, Koizumi S, Yachie A, Umehara H (2012) Cellular heat acclimation regulates cell growth, cell morphology, mitogen-activated protein kinase activation, and expression of aquaporins in mouse fibroblast cells. Cell Physiol Biochem 30:450–457PubMedGoogle Scholar
  39. 39.
    Jurivich DA, Chung J, Blenis J (1991) Heat shock induces two distinct S6 protein kinase activities in quiescent mammalian fibroblasts. J Cell Physiol 148:252–259PubMedGoogle Scholar
  40. 40.
    Zalewski A, Shi Y (1997) Vascular myofibroblasts. Lessons from coronary repair and remodeling. Arterioscler Thromb Vasc Biol 17:417–422PubMedGoogle Scholar
  41. 41.
    Scott NA, Cipolla GD, Ross CE, Dunn B, Martin FH, Simonet L, Wilcox JN (1996) Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation 93:2178–2187PubMedGoogle Scholar
  42. 42.
    Shi Y, O'Brien JE Jr, Ala-Kokko L, Chung W, Mannion JD, Zalewski A (1997) Origin of extracellular matrix synthesis during coronary repair. Circulation 95:997–1006PubMedGoogle Scholar
  43. 43.
    Labropoulos N, Bhatti A, Leon L, Borge M, Rodriguez H, Kalman P (2006) Neovascularization after great saphenous vein ablation. Eur J Vasc Endovasc Surg 31:219–222PubMedGoogle Scholar
  44. 44.
    Marsh P, Price BA, Holdstock J, Harrison C, Whiteley MS (2010) Deep vein thrombosis (DVT) after venous thermoablation techniques: rates of endovenous heat-induced thrombosis (EHIT) and classical DVT after radiofrequency and endovenous laser ablation in a single centre. Eur J Vasc Endovasc Surg 40:521–527PubMedGoogle Scholar
  45. 45.
    Black JF, Barton JK (2004) Chemical and structural changes in blood undergoing laser photocoagulation. Photochem Photobiol 80:89–97PubMedGoogle Scholar
  46. 46.
    Black JF, Wade N, Barton JK (2005) Mechanistic comparison of blood undergoing laser photocoagulation at 532 and 1,064 nm. Lasers Surg Med 36:155–165PubMedGoogle Scholar
  47. 47.
    Heger M, Beek J, Stenback K, Faber D, van Gemert M, Ince C (2005) Darkfield orthogonal polarized spectral imaging for studying endovenous laser–tissue interactions in vivo—a preliminary study. Opt Express 13:702–715PubMedGoogle Scholar
  48. 48.
    Heger M, Bezemer R, Huertas-Perez JF, Dekker H, Beek JF (2010) Endovenous laser–tissue interactions redefined: shining light on novel windows of therapeutic opportunity beyond selective photothermolysis. Photomed Laser Surg 28:569–572PubMedGoogle Scholar
  49. 49.
    Bezemer R, Heger M, van den Wijngaard JP, Mordon SR, van Gemert MJ, Beek JF (2007) Laser-induced (endo)vascular photothermal effects studied by combined brightfield and fluorescence microscopy in hamster dorsal skin fold venules. Opt Express 15:8493–8506PubMedGoogle Scholar
  50. 50.
    Barton JK, Popok D, Black JF (2001) Thermal analysis of blood undergoing laser photocoagulation. IEEE J Sel Top Quantum Electron 7:936–943Google Scholar
  51. 51.
    Geering B, Stoeckle C, Conus S, Simon HU (2013) Living and dying for inflammation: neutrophils, eosinophils, basophils. Trends Immunol 34:398–409PubMedGoogle Scholar
  52. 52.
    Zong WX, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20:1–15PubMedGoogle Scholar
  53. 53.
    Brouckaert G, Kalai M, Krysko DV, Saelens X, Vercammen D, Ndlovu MN, Haegeman G, D'Herde K, Vandenabeele P (2004) Phagocytosis of necrotic cells by macrophages is phosphatidylserine dependent and does not induce inflammatory cytokine production. Mol Biol Cell 15:1089–1100PubMedCentralPubMedGoogle Scholar
  54. 54.
    Sakallioglu AE, Basaran O, Karakayali H, Ozdemir BH, Yucel M, Arat Z, Haberal M (2006) Interactions of systemic immune response and local wound healing in different burn depths: an experimental study on rats. J Burn Care Res 27:357–366PubMedGoogle Scholar
  55. 55.
    von Bruhl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, Khandoga A, Tirniceriu A, Coletti R, Kollnberger M, Byrne RA, Laitinen I, Walch A, Brill A, Pfeiler S, Manukyan D, Braun S, Lange P, Riegger J, Ware J, Eckart A, Haidari S, Rudelius M, Schulz C, Echtler K, Brinkmann V, Schwaiger M, Preissner KT, Wagner DD, Mackman N, Engelmann B, Massberg S (2012) Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 209:819–835Google Scholar
  56. 56.
    Seizer P, Gawaz M, May AE (2008) Platelet-monocyte interactions—a dangerous liaison linking thrombosis, inflammation and atherosclerosis. Curr Med Chem 15:1976–1980PubMedGoogle Scholar
  57. 57.
    Stadelmann WK, Digenis AG, Tobin GR (1998) Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg 176:26S–38SPubMedGoogle Scholar
  58. 58.
    Gear AR, Camerini D (2003) Platelet chemokines and chemokine receptors: linking hemostasis, inflammation, and host defense. Microcirculation 10:335–350PubMedGoogle Scholar
  59. 59.
    Sakamoto H, Firkin FC, Chesterman CN (1984) Stimulation of leukocyte phagocytic activity by the platelet release reaction. Pathology 16:126–130PubMedGoogle Scholar
  60. 60.
    de Bruijne-Admiraal LG, Modderman PW, Von dem Borne AE, Sonnenberg A (1992) P-selectin mediates Ca(2+)-dependent adhesion of activated platelets to many different types of leukocytes: detection by flow cytometry. Blood 80:134–142PubMedGoogle Scholar
  61. 61.
    Otterdal K, Smith C, Oie E, Pedersen TM, Yndestad A, Stang E, Endresen K, Solum NO, Aukrust P, Damas JK (2006) Platelet-derived LIGHT induces inflammatory responses in endothelial cells and monocytes. Blood 108:928–935PubMedGoogle Scholar
  62. 62.
    Heemskerk JW, Bevers EM, Lindhout T (2002) Platelet activation and blood coagulation. Thromb Haemost 88:186–193PubMedGoogle Scholar
  63. 63.
    Camire RM, Kalafatis M, Simioni P, Girolami A, Tracy PB (1998) Platelet-derived factor Va/Va Leiden cofactor activities are sustained on the surface of activated platelets despite the presence of activated protein C. Blood 91:2818–2829PubMedGoogle Scholar
  64. 64.
    Bondanza A, Sabbadini MG, Pellegatta F, Zimmermann VS, Tincani A, Balestrieri G, Manfredi AA, Rovere P (2000) Anti-beta2 glycoprotein I antibodies prevent the de-activation of platelets and sustain their phagocytic clearance. J Autoimmun 15:469–477PubMedGoogle Scholar
  65. 65.
    Tans G, Rosing J, Thomassen MC, Heeb MJ, Zwaal RF, Griffin JH (1991) Comparison of anticoagulant and procoagulant activities of stimulated platelets and platelet-derived microparticles. Blood 77:2641–2648PubMedGoogle Scholar
  66. 66.
    Gilbert GE, Sims PJ, Wiedmer T, Furie B, Furie BC, Shattil SJ (1991) Platelet-derived microparticles express high affinity receptors for factor VIII. J Biol Chem 266:17261–17268PubMedGoogle Scholar
  67. 67.
    Hoffman M, Monroe DM, Roberts HR (1992) Coagulation factor IXa binding to activated platelets and platelet-derived microparticles: a flow cytometric study. Thromb Haemost 68:74–78PubMedGoogle Scholar
  68. 68.
    Sims PJ, Faioni EM, Wiedmer T, Shattil SJ (1988) Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem 263:18205–18212PubMedGoogle Scholar
  69. 69.
    Pasquet JM, Toti F, Nurden AT, Dachary-Prigent J (1996) Procoagulant activity and active calpain in platelet-derived microparticles. Thromb Res 82:509–522PubMedGoogle Scholar
  70. 70.
    Barry OP, Pratico D, Lawson JA, FitzGerald GA (1997) Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J Clin Invest 99:2118–2127PubMedCentralPubMedGoogle Scholar
  71. 71.
    Jy W, Mao WW, Horstman L, Tao J, Ahn YS (1995) Platelet microparticles bind, activate and aggregate neutrophils in vitro. Blood Cells Mol Dis 21:217–231PubMedGoogle Scholar
  72. 72.
    Krysko DV, D'Herde K, Vandenabeele P (2006) Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis 11:1709–1726PubMedGoogle Scholar
  73. 73.
    Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216PubMedGoogle Scholar
  74. 74.
    Krysko O, De RL, Cornelissen M (2004) Phosphatidylserine exposure during early primary necrosis (oncosis) in JB6 cells as evidenced by immunogold labeling technique. Apoptosis 9:495–500PubMedGoogle Scholar
  75. 75.
    Hirt UA, Leist M (2003) Rapid, noninflammatory and PS-dependent phagocytic clearance of necrotic cells. Cell Death Differ 10:1156–1164PubMedGoogle Scholar
  76. 76.
    Jones AL, Poon IK, Hulett MD, Parish CR (2005) Histidine-rich glycoprotein specifically binds to necrotic cells via its amino-terminal domain and facilitates necrotic cell phagocytosis. J Biol Chem 280:35733–35741PubMedGoogle Scholar
  77. 77.
    Hespanhol MR, Mantovani B (2002) Phagocytosis by macrophages mediated by receptors for denatured proteins - dependence on tyrosine protein kinases. Braz J Med Biol Res 35:383–389PubMedGoogle Scholar
  78. 78.
    Davis GE (1992) The Mac-1 and p150,95 beta 2 integrins bind denatured proteins to mediate leukocyte cell-substrate adhesion. Exp Cell Res 200:242–252PubMedGoogle Scholar
  79. 79.
    Sewell RF, Brenchley PE, Mallick NP (1989) Human mononuclear cells contain an endoglycosidase specific for heparan sulphate glycosaminoglycan demonstrable with the use of a specific solid-phase metabolically radiolabelled substrate. Biochem J 264:777–783PubMedCentralPubMedGoogle Scholar
  80. 80.
    Ishai-Michaeli R, Eldor A, Vlodavsky I (1990) Heparanase activity expressed by platelets, neutrophils, and lymphoma cells releases active fibroblast growth factor from extracellular matrix. Cell Regul 1:833–842PubMedCentralPubMedGoogle Scholar
  81. 81.
    Vlodavsky I, Eldor A, Haimovitz-Friedman A, Matzner Y, Ishai-Michaeli R, Lider O, Naparstek Y, Cohen IR, Fuks Z (1992) Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis 12:112–127PubMedGoogle Scholar
  82. 82.
    Ihrcke NS, Parker W, Reissner KJ, Platt JL (1998) Regulation of platelet heparanase during inflammation: role of pH and proteinases. J Cell Physiol 175:255–267PubMedGoogle Scholar
  83. 83.
    Reiland J, Sanderson RD, Waguespack M, Barker SA, Long R, Carson DD, Marchetti D (2004) Heparanase degrades syndecan-1 and perlecan heparan sulfate: functional implications for tumor cell invasion. J Biol Chem 279:8047–8055PubMedGoogle Scholar
  84. 84.
    Bame KJ (2001) Heparanases: endoglycosidases that degrade heparan sulfate proteoglycans. Glycobiology 11:91R–98RPubMedGoogle Scholar
  85. 85.
    Geyer G, Linss W, Stibenz D (1977) Adsorbed proteins mask negatively charged sites of the erythrocyte glycocalyx. Acta Histochem 60:312–316PubMedGoogle Scholar
  86. 86.
    Okumura T, Jamieson GA (1976) Platelet glycocalicin. I. Orientation of glycoproteins of the human platelet surface, J. Biol Chem 251:5944–5949Google Scholar
  87. 87.
    Czarnowska E, Karwatowska-Prokopczuk E (1995) Ultrastructural demonstration of endothelial glycocalyx disruption in the reperfused rat heart. Involvement of oxygen free radicals. Basic Res Cardiol 90:357–364PubMedGoogle Scholar
  88. 88.
    van Golen RF, van Gulik TM, Heger M (2012) Mechanistic overview of reactive species-induced degradation of the endothelial glycocalyx during hepatic ischemia/reperfusion injury. Free Radic Biol Med 52:1382–1402PubMedGoogle Scholar
  89. 89.
    Kumar V, Abbas AK, Fausto N, Mitchell R (2007) Robbins basic pathology. Saunders, PhiladelphiaGoogle Scholar
  90. 90.
    Martin P, Leibovich SJ (2005) Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 15:599–607PubMedGoogle Scholar
  91. 91.
    Mordon S, Wassmer B, Servell P, Desmyttere J, Grard C, Stalnikiewicz G (2009) Is a vein filled with blood a good model for studying endovenous laser ablation? Lasers Surg Med 41:543–544PubMedGoogle Scholar
  92. 92.
    Heere-Ress E, Veensalu M, Wacheck V, Tzaneva S, Kittler H, Kapiotis S, Wolzt M, Bohler K (2011) Does endovenous laser ablation induce endothelial damage at the saphenofemoral junction? Dermatol Surg 37:1456–1463PubMedGoogle Scholar
  93. 93.
    Martinelli I, Bucciarelli P, Mannucci PM (2010) Thrombotic risk factors: basic pathophysiology. Crit Care Med 38:S3–S9PubMedGoogle Scholar
  94. 94.
    Zhi H, Rauova L, Hayes V, Gao C, Boylan B, Newman DK, McKenzie SE, Cooley BC, Poncz M, Newman PJ (2013) Cooperative integrin/ITAM signaling in platelets enhances thrombus formation in vitro and in vivo. Blood 121:1858–1867PubMedCentralPubMedGoogle Scholar
  95. 95.
    Schulz C, Engelmann B, Massberg S (2013) Crossroads of coagulation and innate immunity: the case of deep vein thrombosis. J Thromb Haemost 11(Suppl 1):233–241PubMedGoogle Scholar
  96. 96.
    Hamburger SA, McEver RP (1990) GMP-140 mediates adhesion of stimulated platelets to neutrophils. Blood 75:550–554PubMedGoogle Scholar
  97. 97.
    Larsen E, Celi A, Gilbert GE, Furie BC, Erban JK, Bonfanti R, Wagner DD, Furie B (1989) PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell 59:305–312PubMedGoogle Scholar
  98. 98.
    Coeffier E, Delautier D, Le Couedic JP, Chignard M, Denizot Y, Benveniste J (1990) Cooperation between platelets and neutrophils for paf-acether (platelet-activating factor) formation. J Leukoc Biol 47:234–243PubMedGoogle Scholar
  99. 99.
    Yan Z, Zhang J, Holt JC, Stewart GJ, Niewiarowski S, Poncz M (1994) Structural requirements of platelet chemokines for neutrophil activation. Blood 84:2329–2339PubMedGoogle Scholar
  100. 100.
    Futosi K, Fodor S, Mocsai A (2013) Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 17:638–650Google Scholar
  101. 101.
    Chertov O, Ueda H, Xu LL, Tani K, Murphy WJ, Wang JM, Howard OM, Sayers TJ, Oppenheim JJ (1997) Identification of human neutrophil-derived cathepsin G and azurocidin/CAP37 as chemoattractants for mononuclear cells and neutrophils. J Exp Med 186:739–747PubMedCentralPubMedGoogle Scholar
  102. 102.
    Kasama T, Strieter RM, Standiford TJ, Burdick MD, Kunkel SL (1993) Expression and regulation of human neutrophil-derived macrophage inflammatory protein 1 alpha. J Exp Med 178:63–72PubMedGoogle Scholar
  103. 103.
    Kasama T, Strieter RM, Lukacs NW, Burdick MD, Kunkel SL (1994) Regulation of neutrophil-derived chemokine expression by IL-10. J Immunol 152:3559–3569PubMedGoogle Scholar
  104. 104.
    Lee A, Whyte MK, Haslett C (1993) Inhibition of apoptosis and prolongation of neutrophil functional longevity by inflammatory mediators. J Leukoc Biol 54:283–288PubMedGoogle Scholar
  105. 105.
    Hume DA, Ross IL, Himes SR, Sasmono RT, Wells CA, Ravasi T (2002) The mononuclear phagocyte system revisited. J Leukoc Biol 72:621–627PubMedGoogle Scholar
  106. 106.
    DiPietro LA (1995) Wound healing: the role of the macrophage and other immune cells. Shock 4:233–240PubMedGoogle Scholar
  107. 107.
    Dole VS, Bergmeier W, Mitchell HA, Eichenberger SC, Wagner DD (2005) Activated platelets induce Weibel–Palade-body secretion and leukocyte rolling in vivo: role of P-selectin. Blood 106:2334–2339PubMedCentralPubMedGoogle Scholar
  108. 108.
    Henn V, Slupsky JR, Grafe M, Anagnostopoulos I, Forster R, Muller-Berghaus G, Kroczek RA (1998) CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391:591–594PubMedGoogle Scholar
  109. 109.
    Frenette PS, Denis CV, Weiss L, Jurk K, Subbarao S, Kehrel B, Hartwig JH, Vestweber D, Wagner DD (2000) P-Selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate platelet–endothelial interactions in vivo. J Exp Med 191:1413–1422PubMedCentralPubMedGoogle Scholar
  110. 110.
    Boehme MW, Galle P, Stremmel W (2002) Kinetics of thrombomodulin release and endothelial cell injury by neutrophil-derived proteases and oxygen radicals. Immunology 107:340–349PubMedCentralPubMedGoogle Scholar
  111. 111.
    Michelson AD, Barnard MR, Hechtman HB, MacGregor H, Connolly RJ, Loscalzo J, Valeri CR (1996) In vivo tracking of platelets: circulating degranulated platelets rapidly lose surface P-selectin but continue to circulate and function. Proc Natl Acad Sci U S A 93:11877–11882PubMedCentralPubMedGoogle Scholar
  112. 112.
    Michelson AD, Barnard MR, Krueger LA, Valeri CR, Furman MI (2001) Circulating monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin: studies in baboons, human coronary intervention, and human acute myocardial infarction. Circulation 104:1533–1537PubMedGoogle Scholar
  113. 113.
    Dole VS, Bergmeier W, Patten IS, Hirahashi J, Mayadas TN, Wagner DD (2007) PSGL-1 regulates platelet P-selectin-mediated endothelial activation and shedding of P-selectin from activated platelets. Thromb Haemost 98:806–812PubMedGoogle Scholar
  114. 114.
    Xu T, Zhang L, Geng ZH, Wang HB, Wang JT, Chen M, Geng JG (2007) P-selectin cross-links PSGL-1 and enhances neutrophil adhesion to fibrinogen and ICAM-1 in a Src kinase-dependent, but GPCR-independent mechanism. Cell Adhes Migr 1:115–123Google Scholar
  115. 115.
    Ma YQ, Plow EF, Geng JG (2004) P-selectin binding to P-selectin glycoprotein ligand-1 induces an intermediate state of alphaMbeta2 activation and acts cooperatively with extracellular stimuli to support maximal adhesion of human neutrophils. Blood 104:2549–2556PubMedGoogle Scholar
  116. 116.
    Falati S, Liu Q, Gross P, Merrill-Skoloff G, Chou J, Vandendries E, Celi A, Croce K, Furie BC, Furie B (2003) Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J Exp Med 197:1585–1598PubMedCentralPubMedGoogle Scholar
  117. 117.
    Abou-Saleh H, Theoret JF, Yacoub D, Merhi Y (2005) Neutrophil P-selectin-glycoprotein-ligand-1 binding to platelet P-selectin enhances metalloproteinase 2 secretion and platelet-neutrophil aggregation. Thromb Haemost 94:1230–1235PubMedGoogle Scholar
  118. 118.
    Anrather D, Millan MT, Palmetshofer A, Robson SC, Geczy C, Ritchie AJ, Bach FH, Ewenstein BM (1997) Thrombin activates nuclear factor-kappaB and potentiates endothelial cell activation by TNF. J Immunol 159:5620–5628PubMedGoogle Scholar
  119. 119.
    Szaba FM, Smiley ST (2002) Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood 99:1053–1059PubMedCentralPubMedGoogle Scholar
  120. 120.
    Senden NH, Jeunhomme TM, Heemskerk JW, Wagenvoord R, van't Veer C, Hemker HC, Buurman WA (1998) Factor Xa induces cytokine production and expression of adhesion molecules by human umbilical vein endothelial cells. J Immunol 161:4318–4324PubMedGoogle Scholar
  121. 121.
    Qi J, Goralnick S, Kreutzer DL (1997) Fibrin regulation of interleukin-8 gene expression in human vascular endothelial cells. Blood 90:3595–3602PubMedGoogle Scholar
  122. 122.
    Neumann FJ, Marx N, Gawaz M, Brand K, Ott I, Rokitta C, Sticherling C, Meinl C, May A, Schomig A (1997) Induction of cytokine expression in leukocytes by binding of thrombin-stimulated platelets. Circulation 95:2387–2394PubMedGoogle Scholar
  123. 123.
    Henke PK, Wakefield TW (2009) Thrombus resolution and vein wall injury: dependence on chemokines and leukocytes. Thromb Res 123(Suppl 4):S72–S78PubMedGoogle Scholar
  124. 124.
    Wakefield TW, Strieter RM, Wilke CA, Kadell AM, Wrobleski SK, Burdick MD, Schmidt R, Kunkel SL, Greenfield LJ (1995) Venous thrombosis-associated inflammation and attenuation with neutralizing antibodies to cytokines and adhesion molecules. Arterioscler Thromb Vasc Biol 15:258–268PubMedGoogle Scholar
  125. 125.
    Wojcik BM, Wrobleski SK, Hawley AE, Wakefield TW, Myers DD Jr, Diaz JA (2011) Interleukin-6: a potential target for post-thrombotic syndrome. Ann Vasc Surg 25:229–239PubMedGoogle Scholar
  126. 126.
    Henke PK, Pearce CG, Moaveni DM, Moore AJ, Lynch EM, Longo C, Varma M, Dewyer NA, Deatrick KB, Upchurch GR Jr, Wakefield TW, Hogaboam C, Kunkel SL (2006) Targeted deletion of CCR2 impairs deep vein thombosis resolution in a mouse model. J Immunol 177:3388–3397PubMedGoogle Scholar
  127. 127.
    Henke PK, Varga A, De S, Deatrick CB, Eliason J, Arenberg DA, Sukheepod P, Thanaporn P, Kunkel SL, Upchurch GR Jr, Wakefield TW (2004) Deep vein thrombosis resolution is modulated by monocyte CXCR2-mediated activity in a mouse model. Arterioscler Thromb Vasc Biol 24:1130–1137PubMedGoogle Scholar
  128. 128.
    Gawaz M, Page S, Massberg S, Nothdurfter C, Weber M, Fisher C, Ungerer M, Brand K (2002) Transient platelet interaction induces MCP-1 production by endothelial cells via I kappa B kinase complex activation. Thromb Haemost 88:307–314PubMedGoogle Scholar
  129. 129.
    Wenzel UO, Fouqueray B, Grandaliano G, Kim YS, Karamitsos C, Valente AJ, Abboud HE (1995) Thrombin regulates expression of monocyte chemoattractant protein-1 in vascular smooth muscle cells. Circ Res 77:503–509PubMedGoogle Scholar
  130. 130.
    von Hundelshausen P, Koenen RR, Sack M, Mause SF, Adriaens W, Proudfoot AE, Hackeng TM, Weber C (2005) Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood 105:924–930Google Scholar
  131. 131.
    Kameyoshi Y, Dorschner A, Mallet AI, Christophers E, Schroder JM (1992) Cytokine RANTES released by thrombin-stimulated platelets is a potent attractant for human eosinophils. J Exp Med 176:587–592PubMedGoogle Scholar
  132. 132.
    Weyrich AS, McIntyre TM, McEver RP, Prescott SM, Zimmerman GA (1995) Monocyte tethering by P-selectin regulates monocyte chemotactic protein-1 and tumor necrosis factor-alpha secretion. Signal integration and NF-kappa B translocation. J Clin Invest 95:2297–2303PubMedCentralPubMedGoogle Scholar
  133. 133.
    Leu HJ, Feigl W, Susani M, Odermatt B (1988) Differentiation of mononuclear blood cells into macrophages, fibroblasts and endothelial cells in thrombus organization. Exp Cell Biol 56:201–210PubMedGoogle Scholar
  134. 134.
    Varma MR, Varga AJ, Knipp BS, Sukheepod P, Upchurch GR, Kunkel SL, Wakefield TW, Henke PK (2003) Neutropenia impairs venous thrombosis resolution in the rat. J Vasc Surg 38:1090–1098PubMedGoogle Scholar
  135. 135.
    Moir E, Booth NA, Bennett B, Robbie LA (2001) Polymorphonuclear leucocytes mediate endogenous thrombus lysis via a u-PA-dependent mechanism. Br J Haematol 113:72–80PubMedGoogle Scholar
  136. 136.
    Singh I, Burnand KG, Collins M, Luttun A, Collen D, Boelhouwer B, Smith A (2003) Failure of thrombus to resolve in urokinase-type plasminogen activator gene-knockout mice: rescue by normal bone marrow-derived cells. Circulation 107:869–875PubMedGoogle Scholar
  137. 137.
    Henke PK, Varma MR, Deatrick KB, Dewyer NA, Lynch EM, Moore AJ, Dubay DA, Sukheepod P, Pearce CG, Upchurch GR Jr, Kunkel SL, Franz MG, Wakefield TW (2006) Neutrophils modulate post-thrombotic vein wall remodeling but not thrombus neovascularization. Thromb Haemost 95:272–281PubMedGoogle Scholar
  138. 138.
    Stief TW, Aab A, Heimburger N (1988) Oxidative inactivation of purified human alpha-2-antiplasmin, antithrombin III, and C1-inhibitor. Thromb Res 49:581–589PubMedGoogle Scholar
  139. 139.
    Wu K, Urano T, Ihara H, Takada Y, Fujie M, Shikimori M, Hashimoto K, Takada A (1995) The cleavage and inactivation of plasminogen activator inhibitor type 1 by neutrophil elastase: the evaluation of its physiologic relevance in fibrinolysis. Blood 86:1056–1061PubMedGoogle Scholar
  140. 140.
    Athens JW, Haab OP, Raab SO, Mauer AM, Ashenbrucker H, Cartwright GE, Wintrobe MM (1961) Leukokinetic studies. IV. The total blood, circulating and marginal granulocyte pools and the granulocyte turnover rate in normal subjects. J Clin Invest 40:989–995PubMedCentralPubMedGoogle Scholar
  141. 141.
    Dancey JT, Deubelbeiss KA, Harker LA, Finch CA (1976) Neutrophil kinetics in man. J Clin Invest 58:705–715PubMedCentralPubMedGoogle Scholar
  142. 142.
    Peters AM, Roddie ME, Danpure HJ, Osman S, Zacharopoulos GP, George P, Stuttle AW, Lavender JP (1988) 99Tcm-HMPAO labelled leucocytes: comparison with 111In-tropolonate labelled granulocytes. Nucl Med Commun 9:449–463PubMedGoogle Scholar
  143. 143.
    McMillan R, Scott JL (1968) Leukocyte labeling with 51-chromium. I. Technique and results in normal subjects. Blood 32:738–754PubMedGoogle Scholar
  144. 144.
    Jitkaew S, Witasp E, Zhang S, Kagan VE, Fadeel B (2009) Induction of caspase- and reactive oxygen species-independent phosphatidylserine externalization in primary human neutrophils: role in macrophage recognition and engulfment. J Leukoc Biol 85:427–437PubMedCentralPubMedGoogle Scholar
  145. 145.
    Webster NL, Crowe SM (2006) Matrix metalloproteinases, their production by monocytes and macrophages and their potential role in HIV-related diseases. J Leukoc Biol 80:1052–1066PubMedGoogle Scholar
  146. 146.
    Hiller O, Lichte A, Oberpichler A, Kocourek A, Tschesche H (2000) Matrix metalloproteinases collagenase-2, macrophage elastase, collagenase-3, and membrane type 1-matrix metalloproteinase impair clotting by degradation of fibrinogen and factor XII. J Biol Chem 275:33008–33013PubMedGoogle Scholar
  147. 147.
    Hiraoka N, Allen E, Apel IJ, Gyetko MR, Weiss SJ (1998) Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 95:365–377PubMedGoogle Scholar
  148. 148.
    Makowski GS, Ramsby ML (1998) Binding of latent matrix metalloproteinase 9 to fibrin: activation via a plasmin-dependent pathway. Inflammation 22:287–305PubMedGoogle Scholar
  149. 149.
    Brancato SK, Albina JE (2011) Wound macrophages as key regulators of repair: origin, phenotype, and function. Am J Pathol 178:19–25PubMedCentralPubMedGoogle Scholar
  150. 150.
    Postlethwaite AE, Keski-Oja J, Moses HL, Kang AH (1987) Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor beta. J Exp Med 165:251–256PubMedGoogle Scholar
  151. 151.
    Koyama N, Koshikawa T, Morisaki N, Saito Y, Yoshida S (1990) Bifunctional effects of transforming growth factor-beta on migration of cultured rat aortic smooth muscle cells. Biochem Biophys Res Commun 169:725–729PubMedGoogle Scholar
  152. 152.
    Massague J (1990) The transforming growth factor-beta family. Annu Rev Cell Biol 6:597–641PubMedGoogle Scholar
  153. 153.
    Verrecchia F, Chu ML, Mauviel A (2001) Identification of novel TGF-beta /Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem 276:17058–17062PubMedGoogle Scholar
  154. 154.
    Deatrick KB, Obi A, Luke CE, Elfline MA, Sood V, Upchurch GR, Jr, Jaffer F, Wakefield TW, Henke PK (2013) Matrix metalloproteinase-9 deletion is associated with decreased mid-term vein wall fibrosis in experimental stasis DVT, Thromb Res 132:360–366Google Scholar
  155. 155.
    Grainger DJ, Wakefield L, Bethell HW, Farndale RW, Metcalfe JC (1995) Release and activation of platelet latent TGF-beta in blood clots during dissolution with plasmin. Nat Med 1:932–937PubMedGoogle Scholar
  156. 156.
    Abe R, Donnelly SC, Peng T, Bucala R, Metz CN (2001) Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol 166:7556–7562PubMedGoogle Scholar
  157. 157.
    Garcia-de-Alba C, Becerril C, Ruiz V, Gonzalez Y, Reyes S, Garcia-Alvarez J, Selman M, Pardo A (2010) Expression of matrix metalloproteases by fibrocytes: possible role in migration and homing. Am J Respir Crit Care Med 182:1144–1152PubMedGoogle Scholar
  158. 158.
    Tonar Z, Kural T Jr, Kochova P, Nedorost L, Witter K (2012) Vasa vasorum quantification in human varicose great and small saphenous veins. Ann Anat 194:473–481PubMedGoogle Scholar
  159. 159.
    Jain RK, Au P, Tam J, Duda DG, Fukumura D (2005) Engineering vascularized tissue. Nat Biotechnol 23:821–823PubMedGoogle Scholar
  160. 160.
    Rouwkema J, Rivron NC, van Blitterswijk CA (2008) Vascularization in tissue engineering. Trends Biotechnol 26:434–441PubMedGoogle Scholar
  161. 161.
    San Biagio PL, Martorana V, Emanuele A, Vaiana SM, Manno M, Bulone D, Palma-Vittorelli MB, Palma MU (1999) Interacting processes in protein coagulation. Proteins 37:116–120PubMedGoogle Scholar
  162. 162.
    Otsuka M, Goto K, Tsuchiya S, Aramaki Y (2005) Phosphatidylserine-specific receptor contributes to TGF-beta production in macrophages through a MAP kinase, ERK. Biol Pharm Bull 28:1707–1710PubMedGoogle Scholar
  163. 163.
    Yu M, Wang HC, Ding AH, Golenbock DT, Latz E, Czura CJ, Fenton MJ, Tracey KJ, Yang H (2006) HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 26:174–179PubMedGoogle Scholar
  164. 164.
    Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, Hua J, An LL, Audoly L, La Rosa G, Bierhaus A, Naworth P, Marshak-Rothstein A, Crow MK, Fitzgerald KA, Latz E, Kiener PA, Coyle AJ (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8:487–496PubMedGoogle Scholar
  165. 165.
    Quintana FJ, Cohen IR (2005) Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J Immunol 175:2777–2782PubMedGoogle Scholar
  166. 166.
    Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Hacker H, Wagner H (2001) Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the Toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276:31332–31339PubMedGoogle Scholar
  167. 167.
    Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303–313PubMedGoogle Scholar
  168. 168.
    D'Souza CA, Rush SJ, Brown IR (1998) Effect of hyperthermia on the transcription rate of heat-shock genes in the rabbit cerebellum and retina assayed by nuclear run-ons. J Neurosci Res 52:538–548PubMedGoogle Scholar
  169. 169.
    Madersbacher S, Grobl M, Kramer G, Dirnhofer S, Steiner GE, Marberger M (1998) Regulation of heat shock protein 27 expression of prostatic cells in response to heat treatment. Prostate 37:174–181PubMedGoogle Scholar
  170. 170.
    Bush KT, Goldberg AL, Nigam SK (1997) Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. J Biol Chem 272:9086–9092PubMedGoogle Scholar
  171. 171.
    Eigenbrod T, Park JH, Harder J, Iwakura Y, Nunez G (2008) Cutting edge: critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1 alpha released from dying cells. J Immunol 181:8194–8198PubMedCentralPubMedGoogle Scholar
  172. 172.
    Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL (2007) Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med 13:851–856PubMedGoogle Scholar
  173. 173.
    Libby P, Ordovas JM, Birinyi LK, Auger KR, Dinarello CA (1986) Inducible interleukin-1 gene-expression in human vascular smooth-muscle cells. J Clin Investig 78:1432–1438PubMedCentralPubMedGoogle Scholar
  174. 174.
    Moussion C, Ortega N, Girard JP (2008) The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’? Plos One 3:e3331Google Scholar
  175. 175.
    Kakkar R, Hei H, Dobner S, Lee RT (2012) Interleukin 33 as a mechanically responsive cytokine secreted by living cells. J Biol Chem 287:6941–6948PubMedCentralPubMedGoogle Scholar
  176. 176.
    Alves JC, Sonego F, Souto FO, Freitas A, Verri WA, Auxiliadora-Martins M, Basile A, McKenzie AN, Xu DM, Cunha FQ, Liew FY (2010) Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat Med 16:708–U113Google Scholar
  177. 177.
    Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195PubMedGoogle Scholar
  178. 178.
    Basu S, Binder RJ, Suto R, Anderson K, Srivastava PK (2000) Necrotic but not apoptiotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF kappa B pathway. Cell Stress Chaperones 5:373Google Scholar
  179. 179.
    Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232PubMedGoogle Scholar
  180. 180.
    Warner SJ, Libby P (1989) Human vascular smooth-muscle cells—target for and source of tumor necrosis factor. J Immunol 142:100–109PubMedGoogle Scholar
  181. 181.
    Jackson A, Friedman S, Zhan X, Engleka KA, Forough R, Maciag T (1992) Heat-shock induces the release of fibroblast growth factor-I from Nih-3T3 cells. Proc Natl Acad Sci U S A 89:10691–10695PubMedCentralPubMedGoogle Scholar
  182. 182.
    Chotani MA, Payson RA, Winkles JA, Chiu IM (1995) human fibroblast growth factor-1 gene-expression in vascular smooth-muscle cells is modulated via an alternate promoter in response to serum and phorbol ester. Nucleic Acids Res 23:434–441PubMedCentralPubMedGoogle Scholar
  183. 183.
    Santos-Ocampo S, Colvin JS, Chellaiah A, Ornitz DM (1996) Expression and biological activity of mouse fibroblast growth factor-9. J Biol Chem 271:1726–1731PubMedGoogle Scholar
  184. 184.
    Loo BM, Darwish K, Vainikka S, Saarikettu J, Vihko P, Hermonen J, Goldman A, Alitalo K, Jalkanen M (2000) Production and characterization of the extracellular domain of recombinant human fibroblast growth factor receptor 4. Int J Biochem Cell Biol 32:489–497PubMedGoogle Scholar
  185. 185.
    Kan M, Wu XC, Wang F, McKeehan WL (1999) Specificity for fibroblast growth factors determined by heparan sulfate in a binary complex with the receptor kinase. J Biol Chem 274:15947–15952PubMedGoogle Scholar
  186. 186.
    Li GH, Oparil S, Kelpke SS, Chen YF, Thompson JA (2002) Fibroblast growth factor receptor-1 signaling induces osteopontin expression and vascular smooth muscle cell-dependent adventitial fibroblast migration in vitro. Circulation 106:854–859PubMedGoogle Scholar
  187. 187.
    Ding Q, Gladson CL, Guidry CR, Santoro SA, Dickeson SK, Shin JT, Thompson JA (2000) Extracellular FGF-1 inhibits cytoskeletal organization and promotes fibroblast motility. Growth Factors 18:93–107PubMedGoogle Scholar
  188. 188.
    Udayakumar TS, Nagle RB, Bowden GT (2004) Fibroblast growth factor-1 transcriptionally induces membrane type-1 matrix metalloproteinase expression in prostate carcinoma cell line. Prostate 58:66–75PubMedGoogle Scholar
  189. 189.
    Grieb TA, Burgess WH (2000) The mitogenic activity of fibroblast growth factor-1 correlates with its internalization and limited proteolytic processing. J Cell Physiol 184:171–182PubMedGoogle Scholar
  190. 190.
    Lin YZ, Yao SY, Hawiger J (1996) Role of the nuclear localization sequence in fibroblast growth factor-1-stimulated mitogenic pathways. J Biol Chem 271:5305–5308PubMedGoogle Scholar
  191. 191.
    Proebstle TM, Krummenauer F, Gul D, Knop J (2004) Nonocclusion and early reopening of the great saphenous vein after endovenous laser treatment is fluence dependent. Dermatol Surg 30:174–178PubMedGoogle Scholar
  192. 192.
    Vuylsteke M, Liekens K, Moons P, Mordon S (2008) Endovenous laser treatment of saphenous vein reflux: how much energy do we need to prevent recanalizations? Vasc Endovasc Surg 42:141–149Google Scholar
  193. 193.
    Wagenseil JE, Mecham RP (2009) Vascular extracellular matrix and arterial mechanics. Physiol Rev 89:957–989PubMedCentralPubMedGoogle Scholar
  194. 194.
    Di WH, Ratsep MT, Chapman A, Boyd R (2010) Adventitial fibroblasts in vascular structure and function: the role of oxidative stress and beyond. Can J Physiol Pharmacol 88:177–186Google Scholar
  195. 195.
    Gill SE, Parks WC (2008) Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 40:1334–1347PubMedCentralPubMedGoogle Scholar
  196. 196.
    Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289PubMedGoogle Scholar
  197. 197.
    Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25PubMedGoogle Scholar
  198. 198.
    Riikonen T, Westermarck J, Koivisto L, Broberg A, Kahari VM, Heino J (1995) Integrin alpha 2 beta 1 is a positive regulator of collagenase (MMP-1) and collagen alpha 1(I) gene expression. J Biol Chem 270:13548–13552PubMedGoogle Scholar
  199. 199.
    Lillie MA, Chalmers GW, Gosline JM (1994) The effects of heating on the mechanical properties of arterial elastin. Connect Tissue Res 31:23–35PubMedGoogle Scholar
  200. 200.
    Svensson G, Linse S, Mani K (2009) Chemical and thermal unfolding of glypican-1: protective effect of heparan sulfate against heat-induced irreversible aggregation. Biochemistry 48:9994–10004PubMedGoogle Scholar
  201. 201.
    Li C, Xu Q (2000) Mechanical stress-initiated signal transductions in vascular smooth muscle cells. Cell Signal 12:435–445PubMedGoogle Scholar
  202. 202.
    Yamamoto K, Yamamoto M (1994) Cell adhesion receptors for native and denatured type I collagens and fibronectin in rabbit arterial smooth muscle cells in culture. Exp Cell Res 214:258–263PubMedGoogle Scholar
  203. 203.
    Yamamoto M, Yamato M, Aoyagi M, Yamamoto K (1995) Identification of integrins involved in cell adhesion to native and denatured type I collagens and the phenotypic transition of rabbit arterial smooth muscle cells. Exp Cell Res 219:249–256PubMedGoogle Scholar
  204. 204.
    Herz DB, Aitken K, Bagli DJ (2003) Collagen directly stimulates bladder smooth muscle cell growth in vitro: regulation by extracellular regulated mitogen activated protein kinase. J Urol 170:2072–2076PubMedGoogle Scholar
  205. 205.
    Chung CH, Lin KT, Chang CH, Peng HC, Huang TF (2009) The integrin alpha2beta1 agonist, aggretin, promotes proliferation and migration of VSMC through NF-kB translocation and PDGF production. Br J Pharmacol 156:846–856PubMedCentralPubMedGoogle Scholar
  206. 206.
    Cabodi S, Di Stefano P, Leal MDC, Tinnirello A, Bisaro B, Morello V, Damiano L, Aramu S, Repetto D, Tornillo G, Defilippi P (2010) Integrins and signal transduction. In: Becchetti A, Arcangeli A (eds) Integrins and ion channels: molecular complexes and signaling, vol 674. Springer, Berlin, pp 43–54Google Scholar
  207. 207.
    Marx SO, Totary-Jain H, Marks AR (2011) Vascular smooth muscle cell proliferation in restenosis. Circ Cardiovasc Interv 4:104–111PubMedGoogle Scholar
  208. 208.
    Gowen BB, Borg TK, Ghaffar A, Mayer EP (2000) Selective adhesion of macrophages to denatured forms of type I collagen is mediated by scavenger receptors. Matrix Biol 19:61–71PubMedGoogle Scholar
  209. 209.
    Hsu HY, Chiu SL, Wen MH, Chen KY, Hua KF (2001) Ligands of macrophage scavenger receptor induce cytokine expression via differential modulation of protein kinase signaling pathways. J Biol Chem 276:28719–28730PubMedGoogle Scholar
  210. 210.
    Abraham LC, Dice JF, Lee K, Kaplan DL (2007) Phagocytosis and remodeling of collagen matrices. Exp Cell Res 313:1045–1055PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Michal Heger
    • 1
  • Rowan F. van Golen
    • 1
  • Mans Broekgaarden
    • 1
  • Renate R. van den Bos
    • 2
  • H. A. Martino Neumann
    • 2
  • Thomas M. van Gulik
    • 1
  • Martin J. C. van Gemert
    • 3
  1. 1.Department of Experimental Surgery, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of DermatologyErasmus MCRotterdamThe Netherlands
  3. 3.Biomedical Engineering and Physics, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations