Advertisement

Lasers in Medical Science

, Volume 29, Issue 2, pp 501–507 | Cite as

Commonly used fiber tips in endovenous laser ablation (EVLA): an analysis of technical differences

  • Toine StokbroekxEmail author
  • Amit de Boer
  • Rudolf M. Verdaasdonk
  • Marc E. Vuylsteke
  • Serge R. Mordon
Original Article

Abstract

Many different types of fiber tips have been developed over the last few years to be used in endovenous laser ablation (EVLA) procedures. All these new but different tips claim a certain superiority over the other tips. Evidence for a best tip is however lacking. Four of these fiber tips have been compared in this article: (1) the bare fiber, (2) the Tulip-Tip, (3) the NeverTouch™ tip, and (4) the radially emitting tip. The aim of this paper is to provide information on the technical differences between these fiber tips and differences in their underlying heat transfer mechanisms. Although all tips are effective in the primary goal of EVLA, namely to occlude the incompetent vein, they differ in side effects, they differ in side effects, practicality, and cost. Although these new tips have improved EVLA, the perfect tip is not on the market yet.

Keywords

Endovenous laser ablation (EVLA) Fiber tips Varicose veins Heat transfer 

References

  1. 1.
    Navarro L, Min RJ, Boné C (2001) Endovenous laser: a new minimally invasive method of treatment for varicose veins - preliminary observations using an 810 nm diode laser. Dermatol Surg 27:117–122PubMedCrossRefGoogle Scholar
  2. 2.
    Navarro L, Navarro N, Bone Salat C, Fructuoso Gomez J, Min RJ (2002) United States Patent, US 6,398,777, date of patent: June 4Google Scholar
  3. 3.
    Proebstle TM, Sandhofer M, Kargl A, Gül D, Rother W, Knop J, Lehr HA (2002) Thermal damage of the inner vein wall during endovenous laser treatment: key role of energy absorption by intravascular blood. Dermatol Surg 28:569–600Google Scholar
  4. 4.
    Schmedt CG, Sroka R, Steckmeier S, Meissner OA, Babaryka G, Hunger K, Ruppert V, Sadeghi-Azandaryani M, Steckmeier BM (2006) Investigation on radiofrequency and laser (980 nm) effects after endoluminal treatment of saphenous vein insufficiency in an ex-vivo model. Eur J Vasc Endovasc Surg 32:318–325PubMedCrossRefGoogle Scholar
  5. 5.
    Vuylsteke M, Liekens K, Moons P, Mordon S (2008) Endovenous laser treatment of saphenous vein reflux: how much energy do we need to prevent recanalizations? Vasc. Endovas Surg 42:141–149CrossRefGoogle Scholar
  6. 6.
    van den Bos RR, Neumann M, de Roos KP, Nijsten T (2009) Endovenous laser ablation-induced complications: review of the literature and new cases. Dermatol Surg 35(8):1206–1214CrossRefGoogle Scholar
  7. 7.
    Vuylsteke M, Van Dorpe J, Roelens J, De Boa T, Mordon S, Fourneau I (2010) Intraluminal fibre-tip centring can improve endovenous laser ablation: a histological study. Eur J Vasc Endovasc Surg 40(1):110–116PubMedCrossRefGoogle Scholar
  8. 8.
    Vuylsteke ME, Thomis S, Mahieu P, Mordon S, Fourneau I (2012) Endovenous laser ablation of the great saphenous vein using a bare fibre versus a tulip fibre: a randomised clinical trial. Eur J Vasc Endovasc Surg 44(6):587–592Google Scholar
  9. 9.
    Disselhoff BCVM, Rem AI, Verdaasdonk RM, der Kinderen DJ, Moll FL (2008) Endovenous laser ablation: an experimental study on the mechanism of action. Phlebology 23:69–76PubMedCrossRefGoogle Scholar
  10. 10.
    Vuylsteke ME, Serge R. Mordon SR (2012) Endovenous laser ablation: a review of mechanisms of action. Annals of Vascular Surgery 26 (3) 424–433Google Scholar
  11. 11.
    van Gemert MJC, van der Geld CWM, Bruijninckx CMA, Verdaasdonk RM, Neumann HAM (2012) Comment to Vuylsteke ME and Mordon SR. Endovenous laser ablation: a review of mechanisms of action. Ann Vasc Surg 26:424–433, Ann Vasc Surg 2012;26:881–883CrossRefGoogle Scholar
  12. 12.
    Malskat WSJ, Poluektova AA, van der Geld C WM, Neumann HAM, Weiss RA, Bruijninckx CMA, van Gemert MJC (2013) Endovenous laser ablation (EVLA): review of mechanisms, modeling outcomes and issues for debate. Lasers Med Sci. doi: 10.1007/s10103-013-1480-5
  13. 13.
    van der Geld CWM, van den Bos RR, van Ruijven PWM, Nijsten T, Neumann HAM, van Gemert MJC (2010) The heat pipe resembling action of boiling bubbles in endovenous laser ablation. Lasers Med Sci 25:907–909PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    van den Bos RR, Kockaert MA, Neumann HAM, Bremmer RH, Nijsten T, van Gemert MJC (2009) Heat conduction from the very hot fiber tip contributes to endovenous laser ablation of varicose veins. Lasers Med Sci 24:247–251, Erratum 2009; 24:679PubMedCrossRefGoogle Scholar
  15. 15.
    Horecker BL (1943) The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red regions. J Biol Chem 148:173–183Google Scholar
  16. 16.
    Kuenstner JT, Norris KH (1994) Spectrophotometry of human hemoglobin in the near infrared region from 1000 to 2500 nm. J Near Infrared Spetrosc 2:59–65CrossRefGoogle Scholar
  17. 17.
    Bosschaart N, Edelman G, Aalders MCG, van Leeuwen TG, Faber DJ (2013) A literature review and novel theoretical approach on the optical properties of whole blood. Lasers Med Sci. doi: 10.1007/s10103-013-1446-7
  18. 18.
    Anderson RR (1991) Introduction to laser photobiology. In: Goldman L (ed) Laser non-surgical medicine. Technomic, LancasterGoogle Scholar
  19. 19.
    Verdaasdonk RM, Holstege FC, Jansen ED, Borst C (1991) Temperature along the surface of modified fiber tips for Nd:YAG laser angioplasty. Lasers Surg Med 11:213–222PubMedCrossRefGoogle Scholar
  20. 20.
    Amzayyb M, van den Bos RR, Kodach VM, de Bruin DM, Nijsten T, Neumann HAM, van Gemert MJC (2010) Carbonized blood deposited on fibres during 810, 940 and 1,470 nm endovenous laser ablation: thickness and absorption by optical coherence tomography. Lasers Med Sci 25:439–447PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Van Ruijven PWM, Poluektova AA, van Gemert MJC, Neumann HAM, Nijsten T, van der Geld CWM (2013) Optical-thermal mathematical model for endovenous laser ablation of varicose veins. Heat Mass Transfer. doi: 10.1007/s10103-013-1451-x
  22. 22.
    Weis RA (2002) Comparison of endovenous radiofrequency versus 810 nm diode laser occlusion of large veins in an animal model. Dermatol Surg 28:56–61CrossRefGoogle Scholar
  23. 23.
    Poluektova AA, Malskat WSJ, Van Gemert MJC, Vuylsteke ME, Bruijninckx CMA, Neumann HAM, van der Geld CWM (2013) Some controversies in endovenous laser ablation of varicose veins addressed by optical-thermal mathematical modeling. Lasers Med Sci. doi: 10.1007/s10103-013-1450-y
  24. 24.
    Mazaĭshvili KV, Stoĭko IM, Khlevtova TV, Kutidze IA, Morenko DN (2011) Venous wall perforations as the leading reason of a painful syndrome after endovenous laser ablation. Angiol Sosud Khir 17(3):79–83PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Toine Stokbroekx
    • 1
    Email author
  • Amit de Boer
    • 2
  • Rudolf M. Verdaasdonk
    • 3
  • Marc E. Vuylsteke
    • 4
  • Serge R. Mordon
    • 5
  1. 1.Tobrix BVWaalreThe Netherlands
  2. 2.Department of Mechanical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Department of Physics and Medical TechnologyFree Unirsity Medical CenterAmsterdamThe Netherlands
  4. 4.Department of Vascular SurgerySt Andries HospitalTieltBelgium
  5. 5.INSERMUniversity Hospital LilleLilleFrance

Personalised recommendations