Advertisement

Lasers in Medical Science

, Volume 29, Issue 3, pp 1043–1050 | Cite as

Effect of low-level laser therapy on allergic asthma in rats

  • Xue-yan Wang
  • Wen-jiang Ma
  • Chang-shan Liu
  • Ying-xin Li
Original Article

Abstract

Asthma is a complex chronic inflammatory disease of the airways that involves the activation of many inflammatory and other types of cells. We investigated the effect of low-level laser therapy (LLLT) on allergic asthma in rats and compared its effect with that of the glucocorticoid budesonide. Asthma was induced by challenge and repeated exposure to ovalbumin. Asthmatic rats were then treated with LLLT or budesonide suspension. LLLT at 8 J/cm2 once daily for 21 days could relieve pathological damage and airway inflammation in asthmatic rats. LLLT could decrease the total numbers of cells and eosinophils in bronchoalveolar lavage fluid. LLLT could reduce levels of IL-4 and increase IFN-γ levels in bronchoalveolar lavage fluid and serum, meanwhile reduce serum IgE levels. Flow cytometry assay showed that LLLT can regulate the Th1/Th2 imbalance of asthmatic rats. LLLT had a similar effect to that of budesonide. These findings suggest that the mechanism of LLLT treatment of asthma is by adjustment of Th1/Th2 imbalance. Thus, LLLT could take over some of the effects of budesonide for the treatment of asthma, thereby reducing some of the side effects of budesonide.

Keywords

Asthma LLLT IL-4 IFN-γ 

Notes

Acknowledgments

This work was supported financially by the Experimental Animal Center of Tianjin Medical University and the Ophthalmic Research Institute of Tianjin Medical University.

Conflict of interest

The authors have no conflicts of interest to declare.

References

  1. 1.
    Braman SS (2006) The global burden of asthma. Chest 130:4S–12S. doi: 10.1378/chest.130.1_suppl.4S PubMedCrossRefGoogle Scholar
  2. 2.
    Basu K, Nair A, Williamson PA, Mukhopadhyay S, Lipworth BJ (2009) Airway and systemic effects of soluble and suspension formulations of nebulized budesonide in asthmatic children. Ann Allergy Asthma Immunol 103:436–441. doi: 10.1016/S1081-1206(10)60365-1 PubMedCrossRefGoogle Scholar
  3. 3.
    Rothers J, Halonen M, Stern DA, Lohman IC, Mobley S, Spangenberg A, Anderson D, Wright AL (2011) Adaptive cytokine production in early life differentially predicts total IgE levels and asthma through age 5 years. J Allergy Clin Immunol 128:397–402. doi: 10.1016/j.jaci.2011.04.044 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Dubois A, Deruytter N, Adams B, Kanda A, Delbauve S, Fleury S, Torres D, François A, Pétein M, Goldman M, Dombrowicz D, Flamand V (2010) Regulation of Th2 responses and allergic inflammation through bystander activation of CD8+ T lymphocytes in early life. J Immunol 185:884–891. doi: 10.4049/jimmunol.0903287 PubMedCrossRefGoogle Scholar
  5. 5.
    Luzina IG, Lockatell V, Lavania S, Pickering EM, Kang PH, Bashkatova YN, Andreev SM, Atamas SP (2012) Natural production and functional effects of alternatively spliced interleukin-4 protein in asthma. Cytokine 58:20–26. doi: 10.1016/j.cyto.2011.12.017 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Pires D, Xavier M, Araújo T, Silva JA Jr, Aimbire F, Albertini R (2011) Low-level laser therapy (LLLT; 780 nm) acts differently on mRNA expression of anti- and pro-inflammatory mediators in an experimental model of collagenase-induced tendinitis in rat. Lasers Med Sci 26:85–94. doi: 10.1007/s10103-010-0811-z PubMedCrossRefGoogle Scholar
  7. 7.
    Aimbire F, Ligeiro de Oliveira AP, Albertini R, Corrêa JC, Ladeira de Campos CB, Lyon JP, Silva JA Jr, Costa MS (2008) Low level laser therapy (LLLT) decreases pulmonary microvascular leakage, neutrophil influx and IL-1beta levels in airway and lung from rat subjected to LPS-induced inflammation. Inflammation 31:189–197. doi: 10.1007/s10753-008-9064-4 PubMedCrossRefGoogle Scholar
  8. 8.
    Takayama S, Tamaoka M, Takayama K, Okayasu K, Tsuchiya K, Miyazaki Y, Sumi Y, Martin JG, Inase N (2011) Synthetic double-stranded RNA enhances airway inflammation and remodelling in a rat model of asthma. Immunology 134:140–150. doi: 10.1111/j.1365-2567.2011.03473.x PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Chen YH, Wu R, Geng B, Qi YF, Wang PP, Yao WZ, Tang CS (2009) Endogenous hydrogen sulfide reduces airway inflammation and remodeling in a rat model of asthma. Cytokine 45:117–123. doi: 10.1016/j.cyto.2008.11.009 PubMedCrossRefGoogle Scholar
  10. 10.
    Hsieh YL, Chou LW, Chang PL, Yang CC, Kao MJ, Hong CZ (2012) Low-level laser therapy alleviates neuropathic pain and promotes function recovery in rats with chronic constriction injury: possible involvements in hypoxia-inducible factor 1α (HIF-1α). J Comp Neuro 520:2903–2916. doi: 10.1002/cne.23072 CrossRefGoogle Scholar
  11. 11.
    Mafra de Lima F, Villaverde AB, Salgado MA, Castro-Faria-Neto HC, Munin E, Albertini R, Aimbire F (2010) Low intensity laser therapy (LILT) in vivo acts on the neutrophils recruitment and chemokines/cytokines levels in a model of acute pulmonary inflammation induced by aerosol of lipopolysaccharide from Escherichia coli in rat. J Photochem Photobiol B 101:271–278. doi: 10.1016/j.jphotobiol.2010.07.012 PubMedCrossRefGoogle Scholar
  12. 12.
    MafradeLima F, Villaverde AB, Albertini R, Corrêa JC, Carvalho RL, Munin E, Araújo T, Silva JA, Aimbire F (2011) Dual effect of low-level laser therapy (LLLT) on the acute lung inflammation induced by intestinal ischemia and reperfusion: action on anti- and pro-inflammatory cytokines. Lasers Surg Med 43:410–420. doi: 10.1002/lsm.21053 CrossRefGoogle Scholar
  13. 13.
    Aimbire F, Albertini R, Pacheco MT, Castro-Faria-Neto HC, Leonardo PS, Iversen VV, Lopes-Martins RA, Bjordal JM (2006) Low-level laser therapy induces dose-dependent reduction of TNF alpha levels in acute inflammation. Photomed Laser Surg 24:33–37. doi: 10.1089/pho.2006.24.33 PubMedCrossRefGoogle Scholar
  14. 14.
    Mafra de Lima F, Albertini R, Dantas Y, Maia-Filho AL, Santana Cde L, Castro-Faria-Neto HC, França C, Villaverde AB, Aimbire F (2013) Low-level laser therapy restores the oxidative stress balance in acute lung injury induced by gut ischemia and reperfusion. Photochem Photobiol 89:179–188. doi: 10.1111/j.1751-1097.2012.01214.x CrossRefGoogle Scholar
  15. 15.
    Mafra de Lima F, Vitoretti L, Coelho F, Albertini R, Breithaupt-Faloppa AC, de Lima WT, Aimbire F (2013) Suppressive effect of low-level laser therapy on tracheal hyperresponsiveness and lung inflammation in rat subjected to intestinal ischemia and reperfusion. Lasers Med Sci 28:551–564. doi: 10.1007/s10103-012-1088-1 CrossRefGoogle Scholar
  16. 16.
    Ma WJ, Li XR, Li YX, Xue ZX, Yin HJ, Ma H (2012) Anti-inflammatory effect of low-level laser therapy on Staphylococcus epidermidis endophthalmitis in rabbits. Lasers Med Sci 27:585–591. doi: 10.1007/s10103-011-0991-1 PubMedCrossRefGoogle Scholar
  17. 17.
    Bensadoun RJ, Nair RG (2012) Low-level laser therapy in the prevention and treatment of cancer therapy-induced mucositis: 2012 state of the art based on literature review and meta-analysis. Curr Opin Oncol 24:363–370. doi: 10.1097/CCO.0b013e328352eaa3 PubMedCrossRefGoogle Scholar
  18. 18.
    Jang H, Lee H (2012) Meta-analysis of pain relief effects by laser irradiation on joint areas. Photomed Laser Surg 30:405–417. doi: 10.1089/pho.2012.3240 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Careau E, Sirois J, Bissonnette EY (2002) Characterization of lung hyperresponsiveness, inflammation, and alveolar macrophage mediator production in allergy resistant and susceptible rats. Am J Respir Cell Mol Biol 26:579–586. doi: 10.1165/ajrcmb.26.5.4737 PubMedCrossRefGoogle Scholar
  20. 20.
    Abdureyim S, Amat N, Umar A, Upur H, Berke B, Moore N (2011) Anti-inflammatory, immunomodulatory, and heme oxygenase-1 inhibitory activities of ravan napas, a formulation of uighur traditional medicine, in a rat model of allergic asthma. Evid Based Complement Alternat Med. doi: 10.1155/2011/725926 PubMedCentralPubMedGoogle Scholar
  21. 21.
    Wagner JG, Jiang Q, Harkema JR, Ames BN, Illek B, Roubey RA, Peden DB (2008) Gamma-tocopherol prevents airway eosinophilia and mucous cell hyperplasia in experimentally induced allergic rhinitis and asthma. Clin Exp Allergy 38:501–511. doi: 10.1111/j.1365-2222.2007.02855.x PubMedCrossRefGoogle Scholar
  22. 22.
    Silveira MR, Nunes KP, Cara DC, Souza DG, Corrêa A Jr, Teixeira MM, Negrão-Corrêa D (2002) Infection with Strongyloides venezuelensis induces transient airway eosinophilic inflammation, an increase in immunoglobulin E, and hyperresponsiveness in rats. Infect Immun 70:6263–6272. doi: 10.1128/IAI.70.11.6263-6272.2002 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Cortijo J, Sanz MJ, Iranzo A, Montesinos JL, Nabah YN, Alfón J, Gómez LA, Merlos M, Morcillo EJ (2006) A small molecule, orally active, alpha4beta1/alpha4beta7 dual antagonist reduces leukocyte infiltration and airway hyper-responsiveness in an experimental model of allergic asthma in brown Norway rats. Br J Pharmacol 147:661–670. doi: 10.1038/sj.bjp.0706658 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Carneiro ER, Xavier RA, De Castro MA, Do Nascimento CM, Silveira VL (2010) Electroacupuncture promotes a decrease in inflammatory response associated with Th1/Th2 cytokines, nitric oxide and leukotriene B4 modulation in experimental asthma. Cytokine 50:335–340. doi: 10.1016/j.cyto.2010.01.005 PubMedCrossRefGoogle Scholar
  25. 25.
    Ohga K, Kuromitsu S, Takezawa R, Numazaki M, Ishikawa J, Nagashima S, Shimizu Y (2008) YM-341619 suppresses the differentiation of spleen T cells into Th2 cells in vitro, eosinophilia, and airway hyperresponsiveness in rat allergic models. Eur J Pharmacol 590:409–416. doi: 10.1016/j.ejphar.2008.06.035 PubMedCrossRefGoogle Scholar
  26. 26.
    Camateros P, Tamaoka M, Hassan M, Marino R, Moisan J, Marion D, Guiot MC, Martin JG, Radzioch D (2007) Chronic asthma-induced airway remodeling is prevented by toll-like receptor-7/8 ligand S28463. Am J Respir Crit Care Med 175:1241–1249. doi: 10.1164/rccm.200701-054OC PubMedCrossRefGoogle Scholar
  27. 27.
    Motta AC, Vissers JL, Gras R, Van Esch BC, Van Oosterhout AJ, Nawijn MC (2009) GITR signaling potentiates airway hyperresponsiveness by enhancing Th2 cell activity in a mouse model of asthma. Respir Res 10:93. doi: 10.1186/1465-9921-10-93 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Komai M, Tanaka H, Masuda T, Nagao K, Ishizaki M, Sawada M, Nagai H (2003) Role of Th2 responses in the development of allergen-induced airway remodelling in a murine model of allergic asthma. Br J Pharmacol 138:912–920. doi: 10.1038/sj.bjp.0705105 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Xue-yan Wang
    • 1
  • Wen-jiang Ma
    • 2
  • Chang-shan Liu
    • 1
  • Ying-xin Li
    • 3
  1. 1.Department of PaediatricThe Second Hospital of Tianjin Medical UniversityTianjinChina
  2. 2.Tianjin Medical University Eye HospitalTianjinChina
  3. 3.Chinese Academy of Medical Sciences & Beijing Union Medical CollegeBeijingChina

Personalised recommendations