Lasers in Medical Science

, Volume 29, Issue 4, pp 1517–1529 | Cite as

Laser treatment of recurrent herpes labialis: a literature review

  • Carlos de Paula EduardoEmail author
  • Ana Cecilia Corrêa Aranha
  • Alyne Simões
  • Marina Stella Bello-Silva
  • Karen Muller Ramalho
  • Marcella Esteves-Oliveira
  • Patrícia Moreira de Freitas
  • Juliana Marotti
  • Jan Tunér
Review Article


Recurrent herpes labialis is a worldwide life-long oral health problem that remains unsolved. It affects approximately one third of the world population and causes frequent pain and discomfort episodes, as well as social restriction due to its compromise of esthetic features. In addition, the available antiviral drugs have not been successful in completely eliminating the virus and its recurrence. Currently, different kinds of laser treatment and different protocols have been proposed for the management of recurrent herpes labialis. Therefore, the aim of the present article was to review the literature regarding the effects of laser irradiation on recurrent herpes labialis and to identify the indications and most successful clinical protocols. The literature was searched with the aim of identifying the effects on healing time, pain relief, duration of viral shedding, viral inactivation, and interval of recurrence. According to the literature, none of the laser treatment modalities is able to completely eliminate the virus and its recurrence. However, laser phototherapy appears to strongly decrease pain and the interval of recurrences without causing any side effects. Photodynamic therapy can be helpful in reducing viral titer in the vesicle phase, and high-power lasers may be useful to drain vesicles. The main advantages of the laser treatment appear to be the absence of side effects and drug interactions, which are especially helpful for older and immunocompromised patients. Although these results indicate a potential beneficial use for lasers in the management of recurrent herpes labialis, they are based on limited published clinical trials and case reports. The literature still lacks double-blind controlled clinical trials verifying these effects and such trials should be the focus of future research.


Herpes simplex virus HSV-1 High-power laser Low-power laser Laser phototherapy Photodynamic therapy 


  1. 1.
    Embil JA, Stephens RG, Manuel FR (1975) Prevalence of recurrent herpes labialis and aphthous ulcers among young adults on six continents. Can Med Assoc J 113(7):627–630PubMedCentralPubMedGoogle Scholar
  2. 2.
    Lowhagen GB, Bonde E, Eriksson B, Nordin P, Tunback P, Krantz I (2002) Self-reported herpes labialis in a Swedish population. Scand J Infect Dis 34(9):664–667PubMedGoogle Scholar
  3. 3.
    Spruance SL (1992) The natural history of recurrent oral-facial herpes simplex virus infection. Semin Dermatol 11(3):200–206PubMedGoogle Scholar
  4. 4.
    Cernik C, Gallina K, Brodell RT (2008) The treatment of herpes simplex infections: an evidence-based review. Arch Intern Med 168(11):1137–1144. doi: 10.1001/archinte.168.11.1137 PubMedGoogle Scholar
  5. 5.
    Glenny AM, Fernandez Mauleffinch LM, Pavitt S, Walsh T (2009) Interventions for the prevention and treatment of herpes simplex virus in patients being treated for cancer. Cochrane Database Syst Rev. doi: 10.1002/14651858.CD006706.pub2 Google Scholar
  6. 6.
    Harmenberg J, Oberg B, Spruance S (2010) Prevention of ulcerative lesions by episodic treatment of recurrent herpes labialis: a literature review. Acta Derm Venereol 90(2):122–130. doi: 10.2340/00015555-0806 PubMedGoogle Scholar
  7. 7.
    Woo SB, Challacombe SJ (2007) Management of recurrent oral herpes simplex infections. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103(Suppl):S12 e11–S12 e18. doi: 10.1016/j.tripleo.2006.11.004 Google Scholar
  8. 8.
    Opstelten W, Neven AK, Eekhof J (2008) Treatment and prevention of herpes labialis. Can Fam Physician 54(12):1683–1687PubMedCentralPubMedGoogle Scholar
  9. 9.
    Miller CS, Danaher RJ, Jacob RJ (1998) Molecular aspects of herpes simplex virus I latency, reactivation, and recurrence. Crit Rev Oral Biol Med 9(4):541–562PubMedGoogle Scholar
  10. 10.
    Arduino PG, Porter SR (2008) Herpes simplex virus type 1 infection: overview on relevant clinico-pathological features. J Oral Pathol Med 37(2):107–121PubMedGoogle Scholar
  11. 11.
    Chayavichitsilp P, Buckwalter JV, Krakowski AC, Friedlander SF (2009) Herpes simplex. Pediatr Rev 30(4):119–129. doi: 10.1542/pir.30-4-119 PubMedGoogle Scholar
  12. 12.
    Axell T, Liedholm R (1990) Occurrence of recurrent herpes labialis in an adult Swedish population. Acta Odontol Scand 48(2):119–123PubMedGoogle Scholar
  13. 13.
    Reichart PA (2000) Oral mucosal lesions in a representative cross-sectional study of aging Germans. Community Dent Oral Epidemiol 28(5):390–398PubMedGoogle Scholar
  14. 14.
    Crumpacker CS (2004) Use of antiviral drugs to prevent herpesvirus transmission. N Engl J Med 350(1):67–68. doi: 10.1056/NEJMe038189 PubMedGoogle Scholar
  15. 15.
    Esmann J (2001) The many challenges of facial herpes simplex virus infection. J Antimicrob Chemother 47(Suppl T1):17–27PubMedGoogle Scholar
  16. 16.
    Arduino PG, Porter SR (2006) Oral and perioral herpes simplex virus type 1 (HSV-1) infection: review of its management. Oral Dis 12(3):254–270PubMedGoogle Scholar
  17. 17.
    Fatahzadeh M, Schwartz RA (2007) Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management. J Am Acad Dermatol 57(5):737–763, quiz 764-736PubMedGoogle Scholar
  18. 18.
    Raborn GW, Grace MG (2003) Recurrent herpes simplex labialis: selected therapeutic options. J Can Dent Assoc 69(8):498–503PubMedGoogle Scholar
  19. 19.
    Spruance SL, Kriesel JD (2002) Treatment of herpes simplex labialis. Herpes 9(3):64–69PubMedGoogle Scholar
  20. 20.
    Fatahzadeh M, Schwartz RA (2007) Human herpes simplex labialis. Clin Exp Dermatol 32(6):625–630PubMedGoogle Scholar
  21. 21.
    Spruance SL, Nett R, Marbury T, Wolff R, Johnson J, Spaulding T (2002) Acyclovir cream for treatment of herpes simplex labialis: results of two randomized, double-blind, vehicle-controlled, multicenter clinical trials. Antimicrob Agents Chemother 46(7):2238–2243PubMedCentralPubMedGoogle Scholar
  22. 22.
    Birek C (2000) Herpesvirus-induced diseases: oral manifestations and current treatment options. J Calif Dent Assoc 28(12):911–921PubMedGoogle Scholar
  23. 23.
    Su CT, Hsu JT, Hsieh HP, Lin PH, Chen TC, Kao CL, Lee CN, Chang SY (2008) Anti-HSV activity of digitoxin and its possible mechanisms. Antiviral Res 79(1):62–70PubMedGoogle Scholar
  24. 24.
    Baker D, Eisen D (2003) Valacyclovir for prevention of recurrent herpes labialis: 2 double-blind, placebo-controlled studies. Cutis 71(3):239–242PubMedGoogle Scholar
  25. 25.
    Diaz-Mitoma F, Sibbald RG, Shafran SD, Boon R, Saltzman RL (1998) Oral famciclovir for the suppression of recurrent genital herpes: a randomized controlled trial. Collaborative Famciclovir Genital Herpes Research Group. JAMA 280(10):887–892PubMedGoogle Scholar
  26. 26.
    Kaplowitz LG, Baker D, Gelb L, Blythe J, Hale R, Frost P, Crumpacker C, Rabinovich S, Peacock JE Jr, Herndon J et al (1991) Prolonged continuous acyclovir treatment of normal adults with frequently recurring genital herpes simplex virus infection. The Acyclovir Study Group. JAMA 265(6):747–751PubMedGoogle Scholar
  27. 27.
    Koelle DM, Ghiasi H (2005) Prospects for developing an effective vaccine against ocular herpes simplex virus infection. Curr Eye Res 30(11):929–942. doi: 10.1080/02713680500313153 PubMedGoogle Scholar
  28. 28.
    De Clercq E, Walker RT (1984) Synthesis and antiviral properties of 5-vinylpyrimidine nucleoside analogs. Pharmacol Ther 26(1):1–44PubMedGoogle Scholar
  29. 29.
    Shinkai I, Ohta Y (1996) New drugs—reports of new drugs recently approved by the FDA. Dirithromycin. Bioorg Med Chem 4(4):521–522PubMedGoogle Scholar
  30. 30.
    Bacon TH, Levin MJ, Leary JJ, Sarisky RT, Sutton D (2003) Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy. Clin Microbiol Rev 16(1):114–128PubMedCentralPubMedGoogle Scholar
  31. 31.
    Datema R, Ericson AC, Field HJ, Larsson A, Stenberg K (1987) Critical determinants of antiherpes efficacy of buciclovir and related acyclic guanosine analogs. Antiviral Res 7(6):303–316PubMedGoogle Scholar
  32. 32.
    Earnshaw DL, Bacon TH, Darlison SJ, Edmonds K, Perkins RM, Vere Hodge RA (1992) Mode of antiviral action of penciclovir in MRC-5 cells infected with herpes simplex virus type 1 (HSV-1), HSV-2, and varicella-zoster virus. Antimicrob Agents Chemother 36(12):2747–2757PubMedCentralPubMedGoogle Scholar
  33. 33.
    Morfin F, Thouvenot D (2003) Herpes simplex virus resistance to antiviral drugs. J Clin Virol 26(1):29–37PubMedGoogle Scholar
  34. 34.
    Huber MA (2003) Herpes simplex type-1 virus infection. Quintessence Int 34(6):453–467PubMedGoogle Scholar
  35. 35.
    Karu TI (1986) Molecular mechanism of the therapeutic effect of low-intensity laser irradiation. Dokl Akad Nauk SSSR 291(5):1245–1249PubMedGoogle Scholar
  36. 36.
    Lito P, Pantanowitz L, Marotti J, Aboulafia DM, Campbell V, Bower M, Dezube BJ (2009) Gastroenteropancreatic neuroendocrine tumors in patients with HIV infection: a trans-Atlantic series. Am J Med Sci 337(1):1–4. doi: 10.1097/MAJ.0b013e31817d1cb7 PubMedGoogle Scholar
  37. 37.
    Zungu IL, Hawkins Evans D, Abrahamse H (2009) Mitochondrial responses of normal and injured human skin fibroblasts following low level laser irradiation-an in vitro study. Photochem Photobiol 85(4):987–996. doi: 10.1111/j.1751-1097.2008.00523.x PubMedGoogle Scholar
  38. 38.
    Tunér J (2011) Laser phototherapy (LPT) in dentistry. Int CE Mag Laser Dent 1(8–17)Google Scholar
  39. 39.
    Karu T (1989) Photobiology of low-power laser effects. Health Phys 56(5):691–704PubMedGoogle Scholar
  40. 40.
    Ramalho KM, Luiz AC, de Paula EC, Tunér J, Magalhaes RP, Gallottini Magalhaes M (2011) Use of laser phototherapy on a delayed wound healing of oral mucosa previously submitted to radiotherapy: case report. Int Wound J 8(4):413–418. doi: 10.1111/j.1742-481X.2011.00788.x PubMedGoogle Scholar
  41. 41.
    Schindl A, Schindl M, Pernerstorfer-Schon H, Schindl L (2000) Low-intensity laser therapy: a review. J Investig Med 48(5):312–326PubMedGoogle Scholar
  42. 42.
    Schaffer M, Bonel H, Sroka R, Schaffer PM, Busch M, Reiser M, Duhmke E (2000) Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary findings on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI). J Photochem Photobiol B 54(1):55–60PubMedGoogle Scholar
  43. 43.
    Kudo HC, Inomata K, Okajima K, Moteji M, Oshiro T (1998) Low-level laser therapy: pain attenuation mechanisms. Laser Therapy 2:3–6Google Scholar
  44. 44.
    Hagiwara S, Iwasaka H, Okuda K, Noguchi T (2007) GaAlAs (830 nm) low-level laser enhances peripheral endogenous opioid analgesia in rats. Lasers Surg Med 39(10):797–802. doi: 10.1002/lsm.20583 PubMedGoogle Scholar
  45. 45.
    Mizutani K, Musya Y, Wakae K, Kobayashi T, Tobe M, Taira K, Harada T (2004) A clinical study on serum prostaglandin E2 with low-level laser therapy. Photomed Laser Surg 22(6):537–539. doi: 10.1089/pho.2004.22.537 PubMedGoogle Scholar
  46. 46.
    Chow RT, David MA, Armati PJ (2007) 830 nm laser irradiation induces varicosity formation, reduces mitochondrial membrane potential and blocks fast axonal flow in small and medium diameter rat dorsal root ganglion neurons: implications for the analgesic effects of 830 nm laser. J Peripher Nerv Syst 12(1):28–39. doi: 10.1111/j.1529-8027.2007.00114.x PubMedGoogle Scholar
  47. 47.
    Donnarumma G, De Gregorio V, Fusco A, Farina E, Baroni A, Esposito V, Contaldo M, Petruzzi M, Pannone G, Serpico R (2010) Inhibition of HSV-1 replication by laser diode-irradiation: possible mechanism of action. Int J Immunopathol Pharmacol 23(4):1167–1176PubMedGoogle Scholar
  48. 48.
    de Carvalho RR, de Paula EF, Ramalho KM, Antunes JL, Bezinelli LM, de Magalhaes MH, Pegoretti T, de Freitas PM, de Paula EC (2010) Effect of laser phototherapy on recurring herpes labialis prevention: an in vivo study. Lasers Med Sci 25(3):397–402. doi: 10.1007/s10103-009-0717-9 PubMedGoogle Scholar
  49. 49.
    Sanchez PJM, Femenias JLC, Tejeda AD, Tunér J (2012) The of 670-nm low laser therapy on herpes simplex type 1. Photomed Laser Surg 30(1):37–40Google Scholar
  50. 50.
    Schindl A, Neumann R (1999) Low-intensity laser therapy is an effective treatment for recurrent herpes simplex infection. Results from a randomized double-blind placebo-controlled study. J Invest Dermatol 113(2):221–223. doi: 10.1046/j.1523-1747.1999.00684.x PubMedGoogle Scholar
  51. 51.
    Vélez-González M, Urrea-Arbeláez A, Nicolas M, Serra-Baldrich E, Perez JL, Pavesi M, Camarasa JMG, Trelles MA (1995) Treatment of relapse in herpes simplex on labial & facial areas and of primary herpes simplex on genital areas and “area pudenda” with low power laser (He-Ne) or Acyclovir administered orally. SPIE Proc 2630:43–50Google Scholar
  52. 52.
    Eduardo CP, Bezinelli LM, Eduardo FP, Lopes RMG, Ramalho KM, Bello-Silva MS, Esteves-Oliveira M (2012) Prevention of recurrent herpes labialis outbreaks through low-intensity laser therapy. A clinical protocol with 3 years follow-up. Lasers Med Sci 27(5):1077–1083Google Scholar
  53. 53.
    Marotti J, Aranha AC, Eduardo Cde P, Ribeiro MS (2009) Photodynamic therapy can be effective as a treatment for herpes simplex labialis. Photomed Laser Surg 27(2):357–363. doi: 10.1089/pho.2008.2268 PubMedGoogle Scholar
  54. 54.
    Marotti J, Sperandio FF, Fregnani ER, Aranha AC, de Freitas PM, Eduardo Cde P (2010) High-intensity laser and photodynamic therapy as a treatment for recurrent herpes labialis. Photomed Laser Surg 28(3):439–444. doi: 10.1089/pho.2009.2522 PubMedGoogle Scholar
  55. 55.
    Sperandio FF, Marotti J, Aranha AC, Eduardo Cde P (2009) Photodynamic therapy for the treatment of recurrent herpes labialis: preliminary results. Gen Dent 57(4):415–419PubMedGoogle Scholar
  56. 56.
    Bello-Silva MS, de Freitas PM, Aranha AC, Lage-Marques JL, Simoes A, de Paula EC (2010) Low- and high-intensity lasers in the treatment of herpes simplex virus 1 infection. Photomed Laser Surg 28(1):135–139. doi: 10.1089/pho.2008.2458 PubMedGoogle Scholar
  57. 57.
    Navarro R, Marquezan M, Cerqueira DF, Silveira BL, Correa MS (2007) Low-level-laser therapy as an alternative treatment for primary herpes simplex infection: a case report. J Clin Pediatr Dent 31(4):225–228PubMedGoogle Scholar
  58. 58.
    de Paula EC, de Freitas PM, Esteves-Oliveira M, Aranha AC, Ramalho KM, Simoes A, Bello-Silva MS, Tuner J (2010) Laser phototherapy in the treatment of periodontal disease. A review Lasers Med Sci 25(6):781–792. doi: 10.1007/s10103-010-0812-y Google Scholar
  59. 59.
    Tunér J, Hode L (2007) The Laser Therapy Handbook. Prima Books, GrangesbergGoogle Scholar
  60. 60.
    Eduardo CP, Bezinelli LM, Eduardo FP, Lopes RMG, Ramalho KM, Bello-Silva MS, Esteves-Oliveira M (2012) Prevention of recurrent herpes labialis outbreaks through low-intensity laser therapy. A clinical protocol with 3 years follow-up. Las Med Sci 27(5):1077–1083Google Scholar
  61. 61.
    Gilioli G, Taparelli F, Fornaciari A, Palmieri B, Celani M (1985) Studio ultrastrutturale di colture cellulari “vero” infettate con virus Herpes Simplex e sottoposte all’- azione Laser [In Italian]. [Ultrastructural study of cell cultures infected with herpes simplex virus and subjected to the action of laser]. Med Laser Rep 3:28–31Google Scholar
  62. 62.
    Novoselova EG, Glushkova OV, Cherenkov DA, Chudnovsky VM, Fesenko EE (2006) Effects of low-power laser radiation on mice immunity. Photodermatol Photoimmunol Photomed 22(1):33–38. doi: 10.1111/j.1600-0781.2006.00191.x PubMedGoogle Scholar
  63. 63.
    Dougal G, Kelly P (2001) A pilot study of treatment of herpes labialis with 1072 nm narrow waveband light. Clin Exp Dermatol 26(2):149–154PubMedGoogle Scholar
  64. 64.
    Landthaler M, Haina D, Waidelich W (1983) Behandlung von zoster, postzosterischen schmerzen und herpes simplex recidivans in loco mit laser-licht. Fortsch Med 101:1039Google Scholar
  65. 65.
    Ackermann G, Hartmann M, Scherer K, Lang EW, Hohenleutner U, Landthaler M, Baumler W (2002) Correlations between light penetration into skin and the therapeutic outcome following laser therapy of port-wine stains. Lasers Med Sci 17(2):70–78. doi: 10.1007/s101030200013 PubMedGoogle Scholar
  66. 66.
    Tunér J, Hode L (1999) Low level laser therapy: clinical practice and scientific background. Prima Books, GrangesbergGoogle Scholar
  67. 67.
    Niemz MH (1996) Laser-tissue interactions: fundamentals and applications, 1st edn. Springer, BerlinGoogle Scholar
  68. 68.
    Azevedo LH, de Paula EF, Moreira MS, de Paula EC, Marques MM (2006) Influence of different power densities of LILT on cultured human fibroblast growth: a pilot study. Lasers Med Sci 21(2):86–89. doi: 10.1007/s10103-006-0379-9 PubMedGoogle Scholar
  69. 69.
    Hamblin MR, Zahra T, Contag CH, McManus AT, Hasan T (2003) Optical monitoring and treatment of potentially lethal wound infections in vivo. J Infect Dis 187(11):1717–1725. doi: 10.1086/375244 PubMedCentralPubMedGoogle Scholar
  70. 70.
    Wainwright M (1998) Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 42(1):13–28PubMedGoogle Scholar
  71. 71.
    Bhatti M, MacRobert A, Meghji S, Henderson B, Wilson M (1998) A study of the uptake of toluidine blue O by Porphyromonas gingivalis and the mechanism of lethal photosensitization. Photochem Photobiol 68(3):370–376PubMedGoogle Scholar
  72. 72.
    Bhatti M, Nair SP, Macrobert AJ, Henderson B, Shepherd P, Cridland J, Wilson M (2001) Identification of photolabile outer membrane proteins of Porphyromonas gingivalis. Curr Microbiol 43(2):96–99. doi: 10.1007/s002840010268 PubMedGoogle Scholar
  73. 73.
    Harris F, Chatfield LK, Phoenix DA (2005) Phenothiazinium based photosensitisers—photodynamic agents with a multiplicity of cellular targets and clinical applications. Curr Drug Targets 6(5):615–627PubMedGoogle Scholar
  74. 74.
    Peng Q, Warloe T, Berg K, Moan J, Kongshaug M, Giercksky KE, Nesland JM (1997) 5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges. Cancer 79(12):2282–2308. doi: 10.1002/(SICI)1097-0142(19970615)79:12<2282::AID-CNCR2>3.0.CO;2-O PubMedGoogle Scholar
  75. 75.
    Bandyopadhyay-Ghosh S, Reaney IM, Johnson A, Hurrell-Gillingham K, Brook IM, Hatton PV (2008) The effect of investment materials on the surface of cast fluorcanasite glasses and glass-ceramics. J Mater Sci Mater Med 19(2):839–846. doi: 10.1007/s10856-007-3207-2 PubMedGoogle Scholar
  76. 76.
    Wainwright M (2003) Local treatment of viral disease using photodynamic therapy. Int J Antimicrob Agents 21(6):510–520PubMedGoogle Scholar
  77. 77.
    Schulz EW (1928) Inactivation of Staphyloccus bacteriophage by Methylene Blue. Proc Soc Exp Biol Med 26:100–101Google Scholar
  78. 78.
    Felber TD, Smith EB, Knox JM, Wallis C, Melnick JL (1973) Photodynamic inactivation of herpes simplex. J Am Med Assoc 223(3):289–292Google Scholar
  79. 79.
    Rapp F, Kemeny BA (1977) Oncogenic potential of herpes simplex virus in mammalian cells following photodynamic inactivation. Photochem Photobiol 25(4):335–337PubMedGoogle Scholar
  80. 80.
    Myers MG, Oxman MN, Clark JE, Arndt KA (1975) Failure of neutral-red photodynamic inactivation in recurrent herpes simplex virus infections. N Engl J Med 293(19):945–949. doi: 10.1056/NEJM197511062931901 PubMedGoogle Scholar
  81. 81.
    Owens JW, Robins M (2000) The role of second generation organometallic complexes in the photodynamic therapeutic treatment of cancer. Recent Res Dev Inorg Chem 2:41–55Google Scholar
  82. 82.
    Ackroyd R, Brown N, Vernon D, Roberts D, Stephenson T, Marcus S, Stoddard C, Reed M (1999) 5-Aminolevulinic acid photosensitization of dysplastic Barrett’s esophagus: a pharmacokinetic study. Photochem Photobiol 70(4):656–662PubMedGoogle Scholar
  83. 83.
    Schreiber GB, Busch MP, Kleinman SH, Korelitz JJ (1996) The risk of transfusion-transmitted viral infections. The retrovirus epidemiology donor study. N Engl J Med 334(26):1685–1690. doi: 10.1056/NEJM199606273342601 PubMedGoogle Scholar
  84. 84.
    Muller-Breitkreutz K, Mohr H (1998) Hepatitis C and human immunodeficiency virus RNA degradation by methylene blue/light treatment of human plasma. J Med Virol 56(3):239–245. doi: 10.1002/(SICI)1096-9071(199811)56:3<239::AID-JMV11>3.0.CO;2-9 PubMedGoogle Scholar
  85. 85.
    Smetana Z, Malik Z, Orenstein A, Mendelson E, Ben-Hur E (1997) Treatment of viral infections with 5-aminolevulinic acid and light. Lasers Surg Med 21(4):351–358. doi: 10.1002/(SICI)1096-9101(1997)21:4<351::AID-LSM6>3.0.CO;2-P PubMedGoogle Scholar
  86. 86.
    Wagner SJ, Skripchenko A, Robinette D, Foley JW, Cincotta L (1998) Factors affecting virus photoinactivation by a series of phenothiazine dyes. Photochem Photobiol 67(3):343–349PubMedGoogle Scholar
  87. 87.
    Schnipper LE, Lewin AA, Swartz M, Crumpacker CS (1980) Mechanisms of photodynamic inactivation of herpes simplex viruses: comparison between methylene blue, light plus electricity, and hematoporhyrin plus light. J Clin Invest 65(2):432–438. doi: 10.1172/JCI109686 PubMedCentralPubMedGoogle Scholar
  88. 88.
    Lambrecht B, Mohr H, Knuver-Hopf J, Schmitt H (1991) Photoinactivation of viruses in human fresh plasma by phenothiazine dyes in combination with visible light. Vox Sang 60(4):207–213PubMedGoogle Scholar
  89. 89.
    Tuite EM, Kelly JM (1993) Photochemical interactions of methylene blue and analogues with DNA and other biological substrates. J Photochem Photobiol B 21(2–3):103–124PubMedGoogle Scholar
  90. 90.
    Muller-Breitkreutz K, Mohr H (1997) Infection cycle of herpes viruses after photodynamic treatment with methylene blue and light. Beitr Infusionsther Transfusionsmed 34:37–42PubMedGoogle Scholar
  91. 91.
    Muller-Breitkreutz K, Mohr H, Briviba K, Sies H (1995) Inactivation of viruses by chemically and photochemically generated singlet molecular oxygen. J Photochem Photobiol B 30(1):63–70PubMedGoogle Scholar
  92. 92.
    Wainwright M (2002) The emerging chemistry of blood product disinfection. Chem Soc Rev 31(2):128–136PubMedGoogle Scholar
  93. 93.
    Wagner SJ, Skripchenko A, Robinette D, Mallory DA, Cincotta L (1998) Preservation of red cell properties after virucidal phototreatment with dimethylmethylene blue. Transfusion 38(8):729–737PubMedGoogle Scholar
  94. 94.
    Wainwright M, Phoenix DA, Rice L, Burrow SM, Waring J (1997) Increased cytotoxicity and phototoxicity in the methylene blue series via chromophore methylation. J Photochem Photobiol B 40(3):233–239PubMedGoogle Scholar
  95. 95.
    Ben-Hur E, Hoeben RC, Van Ormondt H, Dubbelman TM, Van Steveninck J (1992) Photodynamic inactivation of retroviruses by phthalocyanines: the effects of sulphonation, metal ligand and fluoride. J Photochem Photobiol B 13(2):145–152PubMedGoogle Scholar
  96. 96.
    Van Lier JE (1990) Phthalocyanines as sensitizers for PDT of cancer. In: Kessel D (ed) Photodynamic therapy of neoplasis diseases, vol 1. CRC Press, Boca Raton, pp 279–291Google Scholar
  97. 97.
    Smetana Z, Mendelson E, Manor J, van Lier JE, Ben-Hur E, Salzberg S, Malik Z (1994) Photodynamic inactivation of herpes viruses with phthalocyanine derivatives. J Photochem Photobiol B 22(1):37–43PubMedGoogle Scholar
  98. 98.
    Smetana Z, Ben-Hur E, Mendelson E, Salzberg S, Wagner P, Malik Z (1998) Herpes simplex virus proteins are damaged following photodynamic inactivation with phthalocyanines. J Photochem Photobiol B 44(1):77–83. doi: 10.1016/S1011-1344(98)00124-9 PubMedGoogle Scholar
  99. 99.
    Rywkin S, Lenny L, Goldstein J, Geacintov NE, Margolis-Nunno H, Horowitz B (1992) Importance of type I and type II mechanisms in the photodynamic inactivation of viruses in blood with aluminum phthalocyanine derivatives. Photochem Photobiol 56(4):463–469PubMedGoogle Scholar
  100. 100.
    Javaly K, Wohlfeiler M, Kalayjian R, Klein T, Bryson Y, Grafford K, Martin-Munley S, Hardy WD (1999) Treatment of mucocutaneous herpes simplex virus infections unresponsive to acyclovir with topical foscarnet cream in AIDS patients: a phase I/II study. J Acquir Immune Defic Syndr 21(4):301–306PubMedGoogle Scholar
  101. 101.
    Lytle CD, Carney PG, Felten RP, Bushar HF, Straight RC (1989) Inactivation and mutagenesis of herpes virus by photodynamic treatment with therapeutic dyes. Photochem Photobiol 50(3):367–371PubMedGoogle Scholar
  102. 102.
    Ackroyd R, Kelty C, Brown N, Reed M (2001) The history of photodetection and photodynamic therapy. Photochem Photobiol 74(5):656–669PubMedGoogle Scholar
  103. 103.
    Kvacheva ZB, Shukanova NA, Votyakov VI, Lobanok ES, Vorobei AV, Nikolaeva SN (2003) Photodynamic inhibition of infection caused by drug-resistant variants of herpes simplex virus type I. Bull Exp Biol Med 135(4):384–387PubMedGoogle Scholar
  104. 104.
    Hsi RA, Rosenthal DI, Glatstein E (1999) Photodynamic therapy in the treatment of cancer: current state of the art. Drugs 57(5):725–734PubMedGoogle Scholar
  105. 105.
    Chan Y, Lai CH (2003) Bactericidal effects of different laser wavelengths on periodontopathic germs in photodynamic therapy. Lasers Med Sci 18(1):51–55. doi: 10.1007/s10103-002-0243-5 PubMedGoogle Scholar
  106. 106.
    Englund JA, Zimmerman ME, Swierkosz EM, Goodman JL, Scholl DR, Balfour HH Jr (1990) Herpes simplex virus resistant to acyclovir. A study in a tertiary care center. Ann Intern Med 112(6):416–422PubMedGoogle Scholar
  107. 107.
    Komerik N, Curnow A, MacRobert AJ, Hopper C, Speight PM, Wilson M (2002) Fluorescence biodistribution and photosensitising activity of toluidine blue o on rat buccal mucosa. Lasers Med Sci 17(2):86–92. doi: 10.1007/s101030200015 PubMedGoogle Scholar
  108. 108.
    Eduardo CP (2010) Laser in contemporary clinical dentistry. In: Fernandes CP (ed) A world class dentistry, FDI 2010. Livraria Santos, Brazil, pp 237–264Google Scholar
  109. 109.
    Ohshiro T, Fujino T (1993) Laser applications in plastic and reconstructive surgery. Keio J Med 42(4):191–195PubMedGoogle Scholar
  110. 110.
    Meister J (2007) Basic research. In: Gutknecht N (ed) Proceedings of the 1st International Workshop of Evidence Based Dentistry on Lasers in Dentistry. Quintessence, Berlin, pp 3–27Google Scholar
  111. 111.
    Calderhead RG (1991) Simultaneous LLLT in laser surgery: the phenomenon explained. In: Ohshiro T, Calderhead RG (eds) Progress in laser therapy. Wiley, Chichester, pp 209–213Google Scholar
  112. 112.
    Kaufmann R, Hibst R (1990) Pulsed 2.94-microns erbium-YAG laser skin ablation—experimental results and first clinical application. Clin Exp Dermatol 15(5):389–393PubMedGoogle Scholar
  113. 113.
    Hohenleutner U, Hohenleutner S, Baumler W, Landthaler M (1997) Fast and effective skin ablation with an Er:YAG laser: determination of ablation rates and thermal damage zones. Lasers Surg Med 20(3):242–247. doi: 10.1002/(SICI)1096-9101(1997)20:3<242::AID-LSM2>3.0.CO;2-Q PubMedGoogle Scholar
  114. 114.
    Hughes PS, Hughes AP (1998) Absence of human papillomavirus DNA in the plume of erbium:YAG laser-treated warts. J Am Acad Dermatol 38(3):426–428PubMedGoogle Scholar
  115. 115.
    Trevor M (1987) Presence of virus in CO2 laser plumes raises infection concern. Hospital Infection Control 14:166–167Google Scholar
  116. 116.
    Kotlow L (2011) Lasers in pediatric dentistry. In: Convissar RA (ed) Principles and practice of laser dentistry. Mosby, Elsevier, St. Louis, pp 202–224Google Scholar
  117. 117.
    Tunér J, Beck-Kristensen PH (2011) Low-level lasers in dentistry. In: Convissar RA (ed) Principles and practice of laser dentistry. Mosby, Elsevier, St. Louis, pp 263–286Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Carlos de Paula Eduardo
    • 1
    Email author
  • Ana Cecilia Corrêa Aranha
    • 1
  • Alyne Simões
    • 2
  • Marina Stella Bello-Silva
    • 1
    • 3
  • Karen Muller Ramalho
    • 1
    • 4
  • Marcella Esteves-Oliveira
    • 1
    • 5
  • Patrícia Moreira de Freitas
    • 1
  • Juliana Marotti
    • 6
  • Jan Tunér
    • 7
  1. 1.Special Laboratory of Lasers in Dentistry (LELO), Department of Restorative DentistrySchool of Dentistry of the University of São Paulo (USP)São PauloBrazil
  2. 2.Laboratory of Oral Biology, Department of Biomaterials and Oral BiologySchool of Dentistry of the University of São Paulo (USP)São PauloBrazil
  3. 3.School of DentistryNove de Julho UniversitySão PauloBrazil
  4. 4.Department of Stomatoloy, Discipline of Integrated Dental ClinicSchool of Dentistry of the University of São Paulo (USP)São PauloBrazil
  5. 5.Department of Operative Dentistry, Periodontology and Preventive DentistryRWTH Aachen UniversityAachenGermany
  6. 6.Department of Prosthodontics and Dental MaterialsMedical Faculty, RWTH Aachen UniversityAachenGermany
  7. 7.Private Dental ClinicGrangesbergSweden

Personalised recommendations