Lasers in Medical Science

, Volume 29, Issue 3, pp 907–910 | Cite as

Photodynamic inactivation of Candida albicans mediated by a low density of light energy

  • Gabriel Salles Barbério
  • Soraia Veloso da Costa
  • Mariana dos Santos Silva
  • Thaís Marchini de Oliveira
  • Thiago Cruvinel Silva
  • Maria Aparecida de Andrade Moreira Machado
Original Article


Shorter times and lower energies of application of light sources are desirable to use photodynamic antimicrobial chemotherapy (PACT) to the clinical control of candidiasis, especially among babies and children. Light energies ranging from 39.5 to 100 J/cm2 were previously applied to kill Candida albicans by PACT. The present study evaluated the efficacy of a combination of 0.05 mg/mL toluidine blue O (TBO) and a short time of application (60 s) and a low density of light energy (18 J/cm2) of a red light-emitting diode (LED) in killing C. albicans planktonic cells. Standard suspensions of C. albicans were randomly assigned for four treatment groups: control (L−P−), LED alone (L+P−), TBO alone (L−P+), and PACT (L+P+). After treatments, serial dilutions of suspensions were prepared and streaked on Sabouraud dextrose agar to determine colony-forming units of C. albicans per milliliter (CFU/mL). The results were analyzed by ANOVA and Tukey’s post-hoc test (P < 0.05). PACT significantly reduced CFUs of C. albicans in comparison to other three treatments. Our results demonstrated a fungicidal effect of PACT mediated by a shorter time of application of LED on C. albicans planktonic cells. Further in vivo studies are needed to elucidate the efficacy of PACT to treat human fungal infections.


Photochemotherapy Candida albicans Photosensitizing agents 


  1. 1.
    Douglas LJ (2002) Medical importance of biofilms in Candida infections. Rev Iberoam Micol 19(3):139–143PubMedGoogle Scholar
  2. 2.
    Donnelly RF, McCarron PA, Tunney MM (2008) Antifungal photodynamic therapy. Microbiol Res 163(1):1–12CrossRefPubMedGoogle Scholar
  3. 3.
    Hannula J, Dogan B, Slots J, Okte E, Asikainen S (2001) Subgingival strains of Candida albicans in relation to geographical origin and occurrence of periodontal pathogenic bacteria. Oral Microbiol Immunol 16(2):113–118CrossRefPubMedGoogle Scholar
  4. 4.
    Pinto PM, Weikert-Oliveira Rde C, Lyon JP, Cury VF, Arantes RR, Koga-Ito CY, Resende MA (2008) In vitro antifungal susceptibility of clinical isolates of Candida spp. obtained from patients with different predisposing factors to candidosis. Microbiol Res 163(5):579–585CrossRefPubMedGoogle Scholar
  5. 5.
    Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3(5):436–450CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Soukos NS, Goodson JM (2011) Photodynamic therapy in the control of oral biofilms. Periodontol 55(1):143–166CrossRefGoogle Scholar
  7. 7.
    Tremblay JF, Dussault S, Viau G, Gad F, Boushira M, Bissonnette R (2002) Photodynamic therapy with toluidine blue in Jurkat cells: cytotoxicity, subcellular localization and apoptosis induction. Photochem Photobiol Sci 1(11):852–856CrossRefPubMedGoogle Scholar
  8. 8.
    Nagayoshi M, Nishihara T, Nakashima K, Iwaki S, Chen KK, Terashita M, Kitamura C (2011) Bactericidal effects of diode laser irradiation on enterococcus faecalis using periapical lesion defect model. ISRN Dent 2011:870364PubMedCentralPubMedGoogle Scholar
  9. 9.
    Sharman WM, Allen CM, van Lier JE (1999) Photodynamic therapeutics: basic principles and clinical applications. Drug Discov Today 4(11):507–517CrossRefPubMedGoogle Scholar
  10. 10.
    Dovigo LN, Pavarina AC, Carmello JC, Machado AL, Brunetti IL, Bagnato VS (2011) Susceptibility of clinical isolates of Candida to photodynamic effects of curcumin. Lasers Surg Med 43(9):927–934CrossRefPubMedGoogle Scholar
  11. 11.
    Carvalho GG, Felipe MP, Costa MS (2009) The photodynamic effect of methylene blue and toluidine blue on Candida albicans is dependent on medium conditions. J Microbiol 47(5):619–623CrossRefPubMedGoogle Scholar
  12. 12.
    Pupo YM, Gomes GM, Santos EB, Chaves L, Michel MD, Kozlowski VA Jr, Gomes OM, Gomes JC (2011) Susceptibility of Candida albicans to photodynamic therapy using methylene blue and toluidine blue as photosensitizing dyes. Acta Odontol Latinoam 24(2):188–192PubMedGoogle Scholar
  13. 13.
    Dai T, Bil de Arce VJ, Tegos GP, Hamblin MR (2011) Blue dye and red light, a dynamic combination for prophylaxis and treatment of cutaneous Candida albicans infections in mice. Antimicrob Agents Chemother 55(12):5710–5717CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Soares BM, da Silva DL, Sousa GR, Amorim JC, de Resende MA, Pinotti M, Cisalpino PS (2009) In vitro photodynamic inactivation of Candida spp. growth and adhesion to buccal epithelial cells. J Photochem Photobiol B 94(1):65–70CrossRefPubMedGoogle Scholar
  15. 15.
    Souza RC, Junqueira JC, Rossoni RD, Pereira CA, Munin E, Jorge AO (2010) Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers Med Sci 25(3):385–389CrossRefPubMedGoogle Scholar
  16. 16.
    Donnelly RF, McCarron PA, Tunney MM, David Woolfson A (2007) Potential of photodynamic therapy in treatment of fungal infections of the mouth. Design and characterisation of a mucoadhesive patch containing toluidine blue O. J Photochem Photobiol B 86(1):59–69CrossRefPubMedGoogle Scholar
  17. 17.
    Wilson M, Mia N (1993) Sensitisation of Candida albicans to killing by low-power laser light. J Oral Pathol Med 22(8):354–357CrossRefPubMedGoogle Scholar
  18. 18.
    Wainwright M, Stanforth A, Jones R, Loughran C, Meegan K (2010) Photoantimicrobials as a potential local approach to geriatric UTIs. Lett Appl Microbiol 50(5):486–492CrossRefPubMedGoogle Scholar
  19. 19.
    Giusti JS, Santos-Pinto L, Pizzolito AC, Helmerson K, Carvalho-Filho E, Kurachi C, Bagnato VS (2008) Antimicrobial photodynamic action on dentin using a light-emitting diode light source. Photomed Laser Surg 26(4):281–287CrossRefPubMedGoogle Scholar
  20. 20.
    Tanaka M, Kinoshita M, Yoshihara Y, Shinomiya N, Seki S, Nemoto K, Hirayama T, Dai T, Huang L, Hamblin MR, Morimoto Y (2012) Optimal photosensitizers for photodynamic therapy of infections should kill bacteria but spare neutrophils. Photochem Photobiol 88(1):227–232CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Fichtenbaum CJ, Powderly WG (1998) Refractory mucosal candidiasis in patients with human immunodeficiency virus infection. Clin Infect Dis 26(3):556–565CrossRefPubMedGoogle Scholar
  22. 22.
    Barchiesi F, Di Francesco LF, Compagnucci P, Arzeni D, Cirioni O, Scalise G (1997) Genotypic identification of sequential Candida albicans isolates from AIDS patients by polymerase chain reaction techniques. Eur J Clin Microbiol Infect Dis 16(8):601–605CrossRefPubMedGoogle Scholar
  23. 23.
    Kontoyiannis DP, Lewis RE (2002) Antifungal drug resistance of pathogenic fungi. Lancet 359(9312):1135–1144CrossRefPubMedGoogle Scholar
  24. 24.
    Wainwright M (1996) Non-porphyrin photosensitizers in biomedicine. Chem Soc Rev 25(5):351CrossRefGoogle Scholar
  25. 25.
    Schlafer S, Vaeth M, Horsted-Bindslev P, Frandsen EVG (2010) Endodontic photoactivated disinfection using a conventional light source: an in vitro and ex vivo study. Oral Surg Oral Med O 109(4):634–641CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Gabriel Salles Barbério
    • 1
  • Soraia Veloso da Costa
    • 1
  • Mariana dos Santos Silva
    • 1
  • Thaís Marchini de Oliveira
    • 1
  • Thiago Cruvinel Silva
    • 1
  • Maria Aparecida de Andrade Moreira Machado
    • 1
  1. 1.Discipline of Pediatric Dentistry, Bauru School of DentistryUniversity of Sao PauloBauruBrazil

Personalised recommendations