Advertisement

Lasers in Medical Science

, Volume 29, Issue 1, pp 121–129 | Cite as

The effects of low-level laser irradiation on cellular viability and proliferation of human skin fibroblasts cultured in high glucose mediums

  • Mohammad Esmaeelinejad
  • Mohammad BayatEmail author
  • Hasan Darbandi
  • Mehrnoush Bayat
  • Nariman Mosaffa
Original Article

Abstract

Delayed wound healing is one of the most challenging complications of diabetes mellitus (DM) in clinical medicine. This study has aimed to evaluate the effects of low-level laser therapy (LLLT) on human skin fibroblasts (HSFs) cultured in a high glucose concentration. HSFs were cultured either in a concentration of physiologic glucose (5.5 mM/l) or high glucose media (11.1 and15 mM/l) for either 1 or 2 weeks after which they were subsequently cultured in either the physiologic glucose or high concentration glucose media during laser irradiation. LLLT was carried out with a helium–neon (He–Ne) laser unit at energy densities of 0.5, 1, and 2 J/cm2, and power density of 0.66 mW/cm2 on 3 consecutive days. HSFs’ viability and proliferation rate were evaluated with the dimethylthiazol-diphenyltetrazolium bromide (MTT) assay. The LLLT at densities of 0.5 and 1 J/cm2 had stimulatory effects on the viability and proliferation rate of HSFs cultured in physiologic glucose (5.5 mM/l) medium compared to their control cultures (p = 0.002 and p = 0.046, respectively). All three doses of 0.5, 1, and 2 J/cm2 had stimulatory effects on the proliferation rate of HSFs cultured in high glucose concentrations when compared to their control cultures (p = 0.042, p = 0.000, and p = 0.000, respectively). This study showed that HSFs originally cultured for 2 weeks in high glucose concentration followed by culture in physiologic glucose during laser irradiation showed enhanced cell viability and proliferation. Thus, LLLT had a stimulatory effect on these HSFs.

Keywords

Helium–neon laser Diabetes mellitus Human skin fibroblasts MTT assay Proliferation rate Viability 

Notes

Acknowledgments

We thank the late Mrs. Jamileh Rezaei. We also extend our thanks to the Vice Chancellor of Research at Shahid Beheshti University of Medical Sciences, Tehran, Iran, for financial support.

Conflict of interest

No competing financial interests exist.

References

  1. 1.
    Robertson RP (2004) Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 279:42351–42354. doi: 10.1074/jbc.R400019200, Epub 2004 Oct 8PubMedCrossRefGoogle Scholar
  2. 2.
    Alberti G, Zimmet P, Shaw J, Bloomgarden Z, Kaufman F, Silink M (2004) Type 2 diabetes in the young: the evolving epidemic: the International diabetes federation consensus workshop. Diabetes Care 27:1798–1811. doi: 10.2337/diacare.27.7.1798 PubMedCrossRefGoogle Scholar
  3. 3.
    De Fronzo R, Bonadonna RC, Ferrannini E (1992) Pathogenesis of NIDDM: a balanced overview. Diabetes Care 15:318–368. doi: 10.2337/diacare.15.4.508 CrossRefGoogle Scholar
  4. 4.
    Groop LC, Widen E, Ferrannini E (1993) Insulin resistance and insulin deficiency in pathogenesis of type 2 (non-insulin dependent) diabetes mellitus: errors of metabolism or of methods ? Diabetologia 36:1326–1331. doi: 10.1007/BF00400814 PubMedCrossRefGoogle Scholar
  5. 5.
    Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Care 87:4–14Google Scholar
  6. 6.
    Goodson WH, Hunt TK (1979) Wound healing and the diabetic patient. Surg Gynerol Obstet 19:600–608Google Scholar
  7. 7.
    Greenhalgh DG (2003) Wound healing and the diabetes mellitus. Clin Plast Surg 30:37–45. doi: 10.1016/S0094-1298(02)00066-4 PubMedCrossRefGoogle Scholar
  8. 8.
    Kern P, Moczar M, Robert L (1979) Biosynthesis of skin collagens in normal and diabetic mice. Biochem J 102:337–345Google Scholar
  9. 9.
    Franzen LE, Roberg K (1995) Impaired connective tissue repair in streptozotocin induced diabetes shows ultrastructoral signs of impaired contraction. J Surg Res 58:407–414PubMedCrossRefGoogle Scholar
  10. 10.
    Brown DL, Kane CD, Chernausek SD, Greenhalgh DG (1997) Differential expression and localization of insulin-like growth factors l and II in cutaneous wound. Am J Pathol 151:715–724PubMedGoogle Scholar
  11. 11.
    Algenstaedt P, Schaefer C, Biermann T, Hamann A, Schwarzloh B, Greten H, Rüther W, Hansen-Algenstaedt N (2003) Microvascular alterations in diabetic mice correlate with level of hyperglycemia. Diabetes 52:542–549. doi: 10.1016/S0736-0266(03)00060-3 PubMedCrossRefGoogle Scholar
  12. 12.
    Loots MAM, Lamme EN, Mekkes JR, Bos JD, Middelkoop E (1999) Cultured fibroblasts from chronic diabetic wounds on the lower extremity (non-insulin-dependent diabetes mellitus) show disturbed proliferation. Arch Dermatol Res 291:93–99. doi: 10.1007/s004030050389 PubMedCrossRefGoogle Scholar
  13. 13.
    Benazzoug Y, Borchiellini C, Labat-Robert J, Robert L, Kern P (1998) Effect of high- glucose concentration on the expression collagens and fibronectin by fibroblasts in culture. Exp Gerontol 33:445–455PubMedCrossRefGoogle Scholar
  14. 14.
    Yevdokimova NY (2003) High glucose–induced alterations of extracellular matrix of human skin fibroblasts are not dependent on TSP-1–TGF β 1 pathway. J Diabetes Complications 17:355–364. doi: 10.1016/S1056-8727(02)00225-8 PubMedCrossRefGoogle Scholar
  15. 15.
    Deveci M, Gilmont RR, Dunham WR, Mudge BP, Smith DJ, Marcelo CL (2005) Glutathione enhances fibroblast collagen concentration and protects keratinocytes from apoptosis in hyperglycaemic culture. Br J Dermatol 152:217–224. doi: 10.1111/j.1365-2133.2004.06329.x PubMedCrossRefGoogle Scholar
  16. 16.
    Grossman N, Schneid N, Reuveni H, Holery S, Lubart (1998) 780 nm low-power diode laser irradiation stimulates proliferation of keratinocyte culture, involvement of reactive oxygen species. Lasers Surg Med 22:212–218PubMedCrossRefGoogle Scholar
  17. 17.
    Almeida-Lopez L, Rigau J, Zangaro RA, Guidugli-Neto J, Jaeger MM (2001) Comparison of low-level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29:179–184CrossRefGoogle Scholar
  18. 18.
    Hawkin DH, Abrahamse H (2006) The role of laser fluence a in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium–neon laser irradiation. Lasers Surg Med 36:74–83. doi: 10.1117/12.641172 CrossRefGoogle Scholar
  19. 19.
    Evans DH, Abrahamse H (2008) Efficacy of three different laser wavelengths for in vitro wound healing. Photodermol Photoimmunol Photomed 24:199–210CrossRefGoogle Scholar
  20. 20.
    Vinck EM, Gaginie BJ, Cornelissen MJ, Declerecq HA, Cambier DC (2005) Green light emitting diode irradiation enhances fibroblast growth impaired by high glucose level. Photomed Laser Surg 23:167–217. doi: 10.1089/pho.2005.23.167 PubMedCrossRefGoogle Scholar
  21. 21.
    Houreld NN, Abrahamse H (2007) In vitro exposure of wounded diabetic fibroblast cells to a helium–neon laser at 5 and 16 J/cm2. Photomed Laser Surg 25:78–84. doi: 10.1089/pho.2007.990 PubMedCrossRefGoogle Scholar
  22. 22.
    Houreld N, Abrahamse H (2007) Irradiation with a 632.8 nm helium–neon laser with 5 J/cm2 stimulates proliferation and expression of interleukin-6 in diabetic wounded fibroblast cells. Diabetes Technol Ther 9(5):451–459. doi: 10.1089/dia.2007.0203 PubMedCrossRefGoogle Scholar
  23. 23.
    Houreld NN, Abrahamse H (2007) Laser light influence cellular viability and proliferation in diabetic-wounded fibroblast cells in a dose- and wavelength dependent manner. Lasers Med Sci 23(1):11–18. doi: 10.1007/s10103-007-0445-y PubMedCrossRefGoogle Scholar
  24. 24.
    Mirzaei M, Bayat M, Mosafa N, Mohsenifar Z, Piryaei A, Farokhi B, Rezaei F, Sadeghi Y, Rakhshan M (2007) Effect of low-level laser therapy on skin fibroblasts of streptozotocine-diabetic rats. Photomed Laser Surg 25:517–523. doi: 10.1089/pho.2007.2098 CrossRefGoogle Scholar
  25. 25.
    Pourreau-Schneider N, Ahmed A, Soudry M, Jacquemier J, Kopp F, Franquin JC, Martin PM (1990) Helium–neon laser treatment transforms fibroblasts into myofibroblasts. Am J Pathol 137:171–178PubMedGoogle Scholar
  26. 26.
    Medrado AR, Puyliese LS, Reis SR, Andrade ZA (2003) Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Lasers Surg Med 32:239–244. doi: 10.1002/lsm.10126 PubMedCrossRefGoogle Scholar
  27. 27.
    Hue WP, Wang JJ, Yu CL, Lan CC, Chen GS, Yu HS (2007) Helium–neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Invest Dermatol 127(8):2048–2057CrossRefGoogle Scholar
  28. 28.
    Do Nascimento RX, Callera F (2006) Low-Level laser therapy at difference energy densities (0.1–2.0 J/cm2) and its effects on the capacity of human long-term cryopreserved peripheral blood progenitor cells for the growth of colony-forming units. Photomed Laser Surg 24:601–604. doi: 10.1089/pho.2006.24.601 PubMedCrossRefGoogle Scholar
  29. 29.
    Prabhu V, Rao SB, Rao NB, Aithal KB, Kumar P, Mahato KK (2010) Development and evaluation of fiber optic probe-based helium–neon low-level laser therapy system for tissue regeneration: an in vivo experimental study. Photochem Photobiol 86:1364–1372. doi: 10.1111/j.1751-1097.2010.00791.x PubMedCrossRefGoogle Scholar
  30. 30.
    Van Breugel HH, Bar PR (1992) Power density and exposure time of He–Ne laser irradiation are more important than total energy dose in photo-biomodulation of human fibroblasts in vitro. Lasers Surg Med 12:528–537. doi: 10.1002/lsm.1900120512 PubMedCrossRefGoogle Scholar
  31. 31.
    Hawkins DH, Abrahamse H (2006) The role of laser fluence in cell viability, proliferation and membrane integrity of wounded human skin fibroblasts following helium–neon laser irradiation. Lasers Surg Med 38:78–83. doi: 10.1002/lsm.20271 CrossRefGoogle Scholar
  32. 32.
    Hawkins D, Abrahamse H (2005) Biological effects of helium–neon laser irradiation on normal and wounded human skin fibroblasts. Photomed Laser Surg 23(3):251–259. doi: 10.1089/pho.2005.23.251 PubMedCrossRefGoogle Scholar
  33. 33.
    Hawkins DH, Abrahamse H (2006) Effects of multiple exposures of low-level laser therapy on cellular responses of wounded human skin fibroblasts. Photomed Laser Surg 24:705–714. doi: 10.1089/pho.2006.24.705 PubMedCrossRefGoogle Scholar
  34. 34.
    Karu T (1989) Photobiology of low-power laser effects. Heal Phys 56:691–704. doi: 10.1097/00004032-198905000-00015 CrossRefGoogle Scholar
  35. 35.
    Dadpay M, Sharifian Z, Bayat M, Bayat M, Dabbagh A (2012) Effect of pulsed infra-red low level laser irradiation on open skin wound healing of healthy and strepzotocin-induced diabetic rats by a biomechanical evaluation. J Photochem Photobiol B 111:1–8, Epub 2012 Mar 16PubMedCrossRefGoogle Scholar
  36. 36.
    Houreld NN, Abrahamse H (2007) Effectiveness of helium–neon laser irradiation on viability and cytotoxicity of diabetic-wounded fibroblast cells. Photomed Laser Surg 25(6):474–481. doi: 10.1089/pho.2007.1095 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Mohammad Esmaeelinejad
    • 1
  • Mohammad Bayat
    • 2
    Email author
  • Hasan Darbandi
    • 3
  • Mehrnoush Bayat
    • 4
  • Nariman Mosaffa
    • 3
  1. 1.Dental FacultyShahid Beheshti University of Medical SciencesTehranIran
  2. 2.Cellular and Molecular Biology Research CenterShahid Beheshti University of Medical SciencesTehranIran
  3. 3.Department of Immunology, Medical FacultyShahid Beheshti University of Medical SciencesTehranIran
  4. 4.Dental FacultyTehran University of Medical SciencesTehranIran

Personalised recommendations