Advertisement

Lasers in Medical Science

, Volume 29, Issue 1, pp 97–104 | Cite as

Effect of 830-nm diode laser irradiation on human sperm motility

  • Reza Salman Yazdi
  • Simin Bakhshi
  • Firooz Jannat Alipoor
  • Mohammad Reza Akhoond
  • Soheila Borhani
  • Faramarz Farrahi
  • Mehdi Lotfi Panah
  • Mohammad Ali Sadighi Gilani
Original Article

Abstract

Sperm motility is known as an effective parameter in male fertility, and it depends on energy consumption. Low-level laser irradiation could increase energy supply to the cell by producing adenosine triphosphate. The purpose of this study is to evaluate how the low-level laser irradiation affects the human sperm motility. Fresh human semen specimens of asthenospermic patients were divided into four equal portions and irradiated by 830-nm GaAlAs laser irradiation with varying doses as: 0 (control), 4, 6 and 10 J/cm2. At the times of 0, 30, 45 and 60 min following irradiation, sperm motilities are assessed by means of computer-aided sperm analysis in all samples. Two additional tests [HOS and sperm chromatin dispersion (SCD) tests] were also performed on the control and high irradiated groups as well. Sperm motility of the control groups significantly decreased after 30, 45 and 60 min of irradiation, while those of irradiated groups remained constant or slightly increased by passing of time. Significant increases have been observed in doses of 4 and 6 J/cm2 at the times of 60 and 45 min, respectively. SCD test also revealed a non-significant difference. Our results showed that irradiating human sperms with low-level 830-nm diode laser can improve their progressive motility depending on both laser density and post-exposure time.

Keywords

Sperm motility Low-level laser HOS test SCD test 

Notes

Acknowledgments

We would like to thank the all staffs and patients of Royan Institute Clinical Laboratory for providing us the semen samples and analysing facilities, especially laboratory technicians Abdol-Ali Ansary and Kaveh Afraz.

References

  1. 1.
    Eddy EM, O'Brien DA (1988) The spermatozoon. In: Knobil E, Neill JD (eds) The physiology of reproduction. Raven Press, New York, pp 27–77Google Scholar
  2. 2.
    Rossato M, Di Virgilio F, Rizzuto R, Galeazzi G, Foresta C (2001) Intracellular calcium store depletion and acrosome reaction in human spermatozoa: role of calcium and plasma membrane potential. Mol Hum Reprod 7(2):119–128PubMedCrossRefGoogle Scholar
  3. 3.
    Kujawa J, Zavodnik L, Zavodnik I, Buko V, Lapshyna A, Bryszewska M (2004) Effect of low-intensity (3.75–25 J/cm2) near-infrared (810 nm) laser radiation on red blood cell ATPase activities and membrane structure. J Clin Laser Med Surg 22(2):111–117PubMedCrossRefGoogle Scholar
  4. 4.
    Frigo L, Fávero GM, Campos Lima HJ, Maria DA, Bjordal JM, Joensen J, Iversen VV, Marcos RL, Parizzoto NA, Lopes-Martins RA (2010) Low-level laser irradiation (InGaAlP-660 nm) increases fibroblast cell proliferation and reduces cell death in a dose-dependent manner. Photomed Laser Surg 28(Suppl 1):S151–156PubMedGoogle Scholar
  5. 5.
    Saracino S, Mozzati M, Martinasso G, Pol R, Canuto RA, Muzio G (2009) Superpulsed laser irradiation increases osteoblast activity via modulation of bone morphogenetic factors. Lasers Surg Med 41(4):298–304PubMedCrossRefGoogle Scholar
  6. 6.
    Hemvani N, Chitnis DS, Bhagwanani NS (2005) Helium-neon and nitrogen laser irradiation accelerates the phagocytic activity of human monocytes. Photomed Laser Surg 23(6):571–574PubMedCrossRefGoogle Scholar
  7. 7.
    Ocaiia Quero JM, Gomez Villamandos RJ, Moreno Millan M, Santisteban Valenzuela JM (1995) The effect of helium-neon laser irradiation on in vitro maturation and fertilization of immature bovine oocytes. Lasers Med Sci 10:113–119CrossRefGoogle Scholar
  8. 8.
    Bielanski A, Hare WCD (1992) Development in vitro of bovine embryos after exposure to continuous helium-neon laser light. Theriogenology 37:192CrossRefGoogle Scholar
  9. 9.
    Cohen N, Lubart R, Rubinstein S, Breitbart H (1998) Light irradiation of mouse spermatozoa: stimulation of in vitro fertilization and calcium signals. Photochem Photobiol 68(3):407–413PubMedCrossRefGoogle Scholar
  10. 10.
    Ocana-Quero JM, Gomez-Villamandos R, Moreno-Millan M, Santisteban-Valenzuela JM (1997) Biological effects of helium-neon (He-Ne) laser irradiation on acrosome reaction in bull sperm cells. J Photochem Photobiol B: Biol 40:294–298CrossRefGoogle Scholar
  11. 11.
    Iaffaldanoa N, Rosatoa MP, Paventib G, Pizzutob R, Gambacortaa M, Manchisia A, Passarellab S (2010) The irradiation of rabbit sperm cells with He–Ne laser prevents their in vitro liquid storage dependent damage. Anim Reprod Sci 119:123–129CrossRefGoogle Scholar
  12. 12.
    Ebner T, Moser M, Yaman C, Sommergruber M, Tews G (2002) Successful birth after laser assisted immobilization of spermatozoa before intracytoplasmic injection. Fertil Steril 78(2):417–418PubMedCrossRefGoogle Scholar
  13. 13.
    Corral-Baques MI, Rigau T, Rivera M, Rodriguez JE, Rigau J (2005) Effect of 655-nm diode laser on dog sperm motility. Lasers Med Sci 20:28–34PubMedCrossRefGoogle Scholar
  14. 14.
    WHO (1999) Laboratory manual for the examination of human semen and sperm-cervical mucus interaction, 4th edn. Cambridge University Press, Cambridge, pp 9–10Google Scholar
  15. 15.
    Fernandez J, Muriel L, Rivero MT, Goyanes V, Vazquez R, Alvarez JG (2003) The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl 24:59–66PubMedGoogle Scholar
  16. 16.
    De Lamirande E, O'Flaherty C (2008) Sperm activation: role of reactive oxygen species and kinases. Biochim Biophys Acta 1784(1):106–115PubMedCrossRefGoogle Scholar
  17. 17.
    Harrison KL, Sherrin DA, Gabel P, Carroll J (2008) Sperm motility enhancement with low level laser therapy. Fertil Steril 90(Suppl):S321–S322CrossRefGoogle Scholar
  18. 18.
    Tadir Y, Wright WH, Vafa O, Liaw LH, Asch R, Berns MW (1991) Micromanipulation of gametes using laser microbeams. Hum Reprod 6(7):1011–1016PubMedGoogle Scholar
  19. 19.
    Zan-Bar T, Bartoov B, Segal R, Yehuda R, Lavi R, Lubart R, Avtalion RR (2005) Influence of visible light and ultraviolet irradiation on motility and fertility of mammalian and fish sperm. Photomed Laser Surg 23(6):549–555PubMedCrossRefGoogle Scholar
  20. 20.
    Jeyendran RS, Van Der Ven HH, Perez-Pelaez M, Crabo BG, Zaneveld LJD (1984) Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. J Reprod Fertil 70:219–228PubMedCrossRefGoogle Scholar
  21. 21.
    Sato H, Landthaler M, Haina D, Chill WBS (1984) The effects of laser light on sperm motility and velocity in vitro. Andrologia 16(1):23–25PubMedCrossRefGoogle Scholar
  22. 22.
    Lenzi A, Claroni F, Gandini L, Lombardo F, Barbieri C, Lino A, Dondero F (1989) Laser radiation and motility patterns of human sperm. Arch Androl 23(3):229–34PubMedCrossRefGoogle Scholar
  23. 23.
    Iaffaldano N, Meluzzi A, Manchisi A, Passarella S (2005) Improvement of stored turkey semen quality as a result of He–Ne laser irradiation. Anim Reprod Sci 85:317–325PubMedCrossRefGoogle Scholar
  24. 24.
    Passarella S, Casamassima E, Molinari S, Pastore D, Quagliariello E, Catalano IM, Cingolani A (1984) Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium-neon laser. FEBS Lett 175(1):95–99PubMedCrossRefGoogle Scholar
  25. 25.
    Oron U, Ilic S, De Taboada L, Streeter J (2007) Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomed Laser Surg 25(3):180–182PubMedCrossRefGoogle Scholar
  26. 26.
    Benedicenti S, Pepe IM, Angiero F, Benedicenti A (2008) Intracellular ATP level increases in lymphocytes irradiated with infrared laser light of wavelength 904 nm. Photomed Laser Surg 26(5):451–453PubMedCrossRefGoogle Scholar
  27. 27.
    Lubart R, Friedmann H, Sinyakov M, Cohen N, Breitbart H (1997) Changes in calcium transport in mammalian sperm mitochondria and plasma membranes caused by 780 nm irradiation. Lasers Surg Med 21:493–499PubMedCrossRefGoogle Scholar
  28. 28.
    Krasznai Z, Krasznai T, Morisawa M, Kassai Bazsane Z, Hernadi Z, Fazekas Z, Tron L, Goda K, Marian T (2006) Role of the Na+/Ca2+ exchanger in calcium homeostasis and human sperm motility. Regul Cell Motility and the Cytoskeleton 63:66–76CrossRefGoogle Scholar
  29. 29.
    Lavi R, Shainberg A, Shneyvays V, Hochauser E, Isaac A, Zinman T, Friedmann H, Lubart R (2010) Detailed analysis of reactive oxygen species induced by visible light in various cell types. Lasers Surg Med 42(6):473–480PubMedCrossRefGoogle Scholar
  30. 30.
    Malik Z, Lugaci H (1987) Destruction of erythroleukaemic cells by photoactivation of endogenous porphyrins. Br J Cancer 56:589–595PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Tuner J, Hode L (2002) Laser therapy: clinical practice and scientific background. Prima Books, Grangesberg, pp 68–69Google Scholar
  32. 32.
    Tuner J, Hode L (2002) Laser therapy: clinical practice and scientific background. Prima Books, Grangesberg, pp 95–97Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Reza Salman Yazdi
    • 1
    • 5
  • Simin Bakhshi
    • 2
  • Firooz Jannat Alipoor
    • 1
  • Mohammad Reza Akhoond
    • 3
  • Soheila Borhani
    • 4
  • Faramarz Farrahi
    • 1
  • Mehdi Lotfi Panah
    • 3
  • Mohammad Ali Sadighi Gilani
    • 1
  1. 1.Department of Andrology at Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
  2. 2.LASER DepartmentGolha ClinicTehranIran
  3. 3.Department of Epidemiology and Reproductive Health at Reproductive Epidemiology Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
  4. 4.Shahid Beheshti University of Medical ScienceTehranIran
  5. 5.Royan InstituteTehranIran

Personalised recommendations