Lasers in Medical Science

, Volume 29, Issue 2, pp 823–829 | Cite as

Laser and light therapy for onychomycosis: a systematic review

  • Jennifer A. Ledon
  • Jessica Savas
  • Katlein Franca
  • Anna Chacon
  • Keyvan Nouri
Review Article

Abstract

More than just a cosmetic concern, onychomycosis is a prevalent and extremely difficult condition to treat. In older and diabetic populations, severe onychomycosis may possibly serve as a nidus for infection, and other more serious complications may ensue. Many treatment modalities for the treatment of onychomycosis have been studied, including topical lacquers and ointments, oral antifungals, surgical and chemical nail avulsion, and lasers. Due to their minimally invasive nature and potential to restore clear nail growth with relatively few sessions, lasers have become a popular option in the treatment of onychomycosis for both physicians and patients. Laser or light systems that have been investigated for this indication include the carbon dioxide, neodymium-doped yttrium aluminum garnet, 870/930-nm combination, and femtosecond infrared 800-nm lasers, in addition to photodynamic and ultraviolet light therapy. This systematic review will discuss each of these modalities as well as their respective currently published, peer-reviewed literature.

Keywords

Lasers Onychomycosis Light therapy Trichophyton rubrum 

References

  1. 1.
    Ghannoum MA, Hajjeh RA, Scher R, Konnikov N, Gupta AK, Summerbell R, Sullivan S, Daniel R, Krusinski P, Fleckman P, Rich P, Odom R, Aly R, Pariser D, Zaiac M, Rebell G, Lesher J, Gerlach B, Ponce-De-Leon GF, Ghannoum A, Warner J, Isham N, Elewski B (2000) A large-scale North American study of fungal isolates from nails: the frequency of onychomycosis, fungal distribution, and antifungal susceptibility patterns. J Am Acad Dermatol 43(4):641–648. doi:10.1067/mjd.2000.107754 PubMedCrossRefGoogle Scholar
  2. 2.
    Rothermel E, Apfelberg DB (1987) Carbon dioxide laser use for certain diseases of the toenails. Clin Podiatr Med Surg 4(4):809–821PubMedGoogle Scholar
  3. 3.
    Schlefman BS (1999) Onychomycosis: a compendium of facts and a clinical experience. J Foot Ankle Surg: official publication of the Am Coll Foot Ankle Surg 38(4):290–302CrossRefGoogle Scholar
  4. 4.
    Gupta AK, Sibbald RG, Lynde CW, Hull PR, Prussick R, Shear NH, De Doncker P, Daniel CR 3rd, Elewski BE (1997) Onychomycosis in children: prevalence and treatment strategies. J Am Acad Dermatol 36(3 Pt 1):395–402PubMedCrossRefGoogle Scholar
  5. 5.
    Apfelberg DB, Rothermel E, Widtfeldt A, Maser MR, Lash H (1984) Preliminary report on use of carbon dioxide laser in podiatry. J Am Podiatry Assoc 74(10):509–513PubMedGoogle Scholar
  6. 6.
    Borovoy M, Tracy M (1992) Noninvasive CO2 laser fenestration improves treatment of onychomycosis. Clin Laser Mon 10(8):123–124PubMedGoogle Scholar
  7. 7.
    Cutler TD, Zimmerman JJ (2011) Ultraviolet irradiation and the mechanisms underlying its inactivation of infectious agents. Anim Health Res Rev/Conf Res Work Anim Dis 12(1):15–23. doi:10.1017/S1466252311000016 CrossRefGoogle Scholar
  8. 8.
    Dai T, Tegos GP, Rolz-Cruz G, Cumbie WE, Hamblin MR (2008) Ultraviolet C inactivation of dermatophytes: implications for treatment of onychomycosis. Br J Dermatol 158(6):1239–1246. doi:10.1111/j.1365-2133.2008.08549.x PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Stern DK, Creasey AA, Quijije J, Lebwohl MG (2011) UV-A and UV-B penetration of normal human cadaveric fingernail plate. Arch Dermatol 147(4):439–441. doi:10.1001/archdermatol.2010.375 PubMedCrossRefGoogle Scholar
  10. 10.
    Kanavy HE, Gerstenblith MR (2011) Ultraviolet radiation and melanoma. Semin Cutan Med Surg 30(4):222–228. doi:10.1016/j.sder.2011.08.003 PubMedCrossRefGoogle Scholar
  11. 11.
    Smijs TG, Pavel S, Talebi M, Bouwstra JA (2009) Preclinical studies with 5,10,15-Tris(4-methylpyridinium)-20-phenyl-[21H,23H]-porphine trichloride for the photodynamic treatment of superficial mycoses caused by Trichophyton rubrum. Photochem Photobiol 85(3):733–739. doi:10.1111/j.1751-1097.2008.00468.x PubMedCrossRefGoogle Scholar
  12. 12.
    Kamp H, Tietz HJ, Lutz M, Piazena H, Sowyrda P, Lademann J, Blume-Peytavi U (2005) Antifungal effect of 5-aminolevulinic acid PDT in Trichophyton rubrum. Mycoses 48(2):101–107. doi:10.1111/j.1439-0507.2004.01070.x PubMedCrossRefGoogle Scholar
  13. 13.
    Donnelly RF, McCarron PA, Lightowler JM, Woolfson AD (2005) Bioadhesive patch-based delivery of 5-aminolevulinic acid to the nail for photodynamic therapy of onychomycosis. J Control Release: official J Control Release Soc 103(2):381–392. doi:10.1016/j.jconrel.2004.12.005 CrossRefGoogle Scholar
  14. 14.
    Piraccini BM, Rech G, Tosti A (2008) Photodynamic therapy of onychomycosis caused by Trichophyton rubrum. J Am Acad Dermatol 59(5 Suppl):S75–S76. doi:10.1016/j.jaad.2008.06.015 PubMedCrossRefGoogle Scholar
  15. 15.
    Gilaberte Y, Aspiroz C, Martes MP, Alcalde V, Espinel-Ingroff A, Rezusta A (2011) Treatment of refractory fingernail onychomycosis caused by nondermatophyte molds with methylaminolevulinate photodynamic therapy. J Am Acad Dermatol 65(3):669–671. doi:10.1016/j.jaad.2010.06.008 PubMedCrossRefGoogle Scholar
  16. 16.
    Watanabe D, Kawamura C, Masuda Y, Akita Y, Tamada Y, Matsumoto Y (2008) Successful treatment of toenail onychomycosis with photodynamic therapy. Arch Dermatol 144(1):19–21. doi:10.1001/archdermatol.2007.17 PubMedCrossRefGoogle Scholar
  17. 17.
    Sotiriou E, Koussidou-Eremonti T, Chaidemenos G, Apalla Z, Ioannides D (2010) Photodynamic therapy for distal and lateral subungual toenail onychomycosis caused by Trichophyton rubrum: preliminary results of a single-centre open trial. Acta Derm Venereol 90(2):216–217. doi:10.2340/00015555-0811 PubMedCrossRefGoogle Scholar
  18. 18.
    Smijs TG, Schuitmaker HJ (2003) Photodynamic inactivation of the dermatophyte Trichophyton rubrum. Photochem Photobiol 77(5):556–560PubMedCrossRefGoogle Scholar
  19. 19.
    Smijs TG, van der Haas RN, Lugtenburg J, Liu Y, de Jong RL, Schuitmaker HJ (2004) Photodynamic treatment of the dermatophyte Trichophyton rubrum and its microconidia with porphyrin photosensitizers. Photochem Photobiol 80(2):197–202. doi:10.1562/2004-04-22-RA-146 PubMedCrossRefGoogle Scholar
  20. 20.
    Smijs TG, Bouwstra JA, Schuitmaker HJ, Talebi M, Pavel S (2007) A novel ex vivo skin model to study the susceptibility of the dermatophyte Trichophyton rubrum to photodynamic treatment in different growth phases. J Antimicrob Chemother 59(3):433–440. doi:10.1093/jac/dkl490 PubMedCrossRefGoogle Scholar
  21. 21.
    Smijs TG, Bouwstra JA, Talebi M, Pavel S (2007) Investigation of conditions involved in the susceptibility of the dermatophyte Trichophyton rubrum to photodynamic treatment. J Antimicrob Chemother 60(4):750–759. doi:10.1093/jac/dkm304 PubMedCrossRefGoogle Scholar
  22. 22.
    Amorim JC, Soares BM, Alves OA, Ferreira MV, Sousa GR, Silveira Lde B, Piancastelli AC, Pinotti M (2012) Phototoxic action of light emitting diode in the in vitro viability of Trichophyton rubrum. An Bras Dermatol 87(2):250–255PubMedGoogle Scholar
  23. 23.
    Bornstein E, Hermans W, Gridley S, Manni J (2009) Near-infrared photoinactivation of bacteria and fungi at physiologic temperatures. Photochem Photobiol 85(6):1364–1374. doi:10.1111/j.1751-1097.2009.00615.x PubMedCrossRefGoogle Scholar
  24. 24.
    Landsman AS, Robbins AH, Angelini PF, Wu CC, Cook J, Oster M, Bornstein ES (2010) Treatment of mild, moderate, and severe onychomycosis using 870- and 930-nm light exposure. J Am Podiatr Med Assoc 100(3):166–177PubMedGoogle Scholar
  25. 25.
    Landsman AS, Robbins AH (2012) Treatment of mild, moderate, and severe onychomycosis using 870- and 930-nm light exposure: some follow-up observations at 270 days. J Am Podiatr Med Assoc 102(2):169–171PubMedGoogle Scholar
  26. 26.
    Yang MU, Yaroslavsky AN, Farinelli WA, Flotte TJ, Rius-Diaz F, Tsao SS, Anderson RR (2005) Long-pulsed neodymium:yttrium-aluminum-garnet laser treatment for port-wine stains. J Am Acad Dermatol 52(3 Pt 1):480–490. doi:10.1016/j.jaad.2004.10.876 PubMedCrossRefGoogle Scholar
  27. 27.
    Kawai K, Akita T, Nishibe S, Nozawa Y, Ogihara Y, Ito Y (1976) Biochemical studies of pigments from a pathogenic fungus Microsporum cookei. III. Comparison of the effects of xanthomegnin and O-methylxanthomegnin on the oxidative phosphorylation of rat liver mitochondria. J Biochem 79(1):145–152PubMedGoogle Scholar
  28. 28.
    Gupta AK, Ahmad I, Borst I, Summerbell RC (2000) Detection of xanthomegnin in epidermal materials infected with Trichophyton rubrum. J Invest Dermatol 115(5):901–905. doi:10.1046/j.1523-1747.2000.00150.x PubMedCrossRefGoogle Scholar
  29. 29.
    Vural E, Winfield HL, Shingleton AW, Horn TD, Shafirstein G (2008) The effects of laser irradiation on Trichophyton rubrum growth. Lasers Med Sci 23(4):349–353. doi:10.1007/s10103-007-0492-4 PubMedCrossRefGoogle Scholar
  30. 30.
    Hees H, Raulin C, Baumler W (2012) Laser treatment of onychomycosis: an in vitro pilot study. Journal der Deutschen Dermatologischen Gesellschaft = J Ger Soc Dermatol: JDDG. doi:10.1111/j.1610-0387.2012.07997.x
  31. 31.
    Choi MJ, Zheng Z, Goo B, Cho SB (2012) Antifungal effects of a 1,444-nm neodymium:yttrium-aluminium-garnet laser on onychomycosis: a pilot study. J Dermatol Treat. doi:10.3109/09546634.2012.714455
  32. 32.
    Hochman LG (2011) Laser treatment of onychomycosis using a novel 0.65-millisecond pulsed Nd:YAG 1064-nm laser. J Cosmet Laser Ther: official publication of the Eur Soc Laser Dermatol 13(1):2–5. doi:10.3109/14764172.2011.552616 CrossRefGoogle Scholar
  33. 33.
    Kimura U, Takeuchi K, Kinoshita A, Takamori K, Hiruma M, Suga Y (2012) Treating onychomycoses of the toenail: clinical efficacy of the sub-millisecond 1,064 nm Nd: YAG laser using a 5 mm spot diameter. J Drugs Dermatol: JDD 11(4):496–504PubMedGoogle Scholar
  34. 34.
    Shen N (2003) Photodisruption in biological tissues using femtosecond laser pulses. Harvard University Press, CambridgeGoogle Scholar
  35. 35.
    Manevitch Z, Lev D, Hochberg M, Palhan M, Lewis A, Enk CD (2010) Direct antifungal effect of femtosecond laser on Trichophyton rubrum onychomycosis. Photochem Photobiol 86(2):476–479. doi:10.1111/j.1751-1097.2009.00672.x PubMedCrossRefGoogle Scholar
  36. 36.
    Warshaw EM, St Clair KR (2005) Prevention of onychomycosis reinfection for patients with complete cure of all 10 toenails: results of a double-blind, placebo-controlled, pilot study of prophylactic miconazole powder 2 %. J Am Acad Dermatol 53(4):717–720. doi:10.1016/j.jaad.2005.06.019 PubMedCrossRefGoogle Scholar
  37. 37.
    Forbes PD, Davies RE, Urbach F (1979) Aging, environmental influences, and photocarcinogenesis. J Invest Dermatol 73(1):131–134PubMedCrossRefGoogle Scholar
  38. 38.
    Swerdlow AJ, English JS, MacKie RM, O’Doherty CJ, Hunter JA, Clark J, Hole DJ (1988) Fluorescent lights, ultraviolet lamps, and risk of cutaneous melanoma. BMJ 297(6649):647–650PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Jennifer A. Ledon
    • 1
  • Jessica Savas
    • 1
  • Katlein Franca
    • 1
  • Anna Chacon
    • 1
  • Keyvan Nouri
    • 1
  1. 1.Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiUSA

Personalised recommendations