Lasers in Medical Science

, Volume 29, Issue 1, pp 19–27

Influence of surface treatments and resin cement selection on bonding to zirconia

Original Article


This study aimed to evaluate the surface changes caused in zirconia by different surface treatments and the influence of the surface treatment and cement selection on bonding to zirconia under aging. Sintered zirconia specimens were divided into five groups (n = 31) based on the surface treatment, namely, control, air abrasion, silica coating, laser and air abrasion + laser. After surface treatment, surface roughness and microscope analyses were performed on one specimen of each group. Composite cylinders were then bonded to conditioned ceramics using RelyX U100 (RXU), Clearfil Esthetic Cement (CEC) and Panavia F (PF) (n = 10). After 24 h, the bonded specimens were subjected to thermal cycling (6,000 times), and then, a shear bond strength test was conducted. The roughness values were analysed using Kruskal–Wallis and Mann–Whitney U tests, and the bond strengths were analysed by two-way analysis of variance and Duncan's test. The relationship between the roughness and the bond strength was determined by Spearman's correlation analysis. Specimens subjected to surface treatments were rougher than the control specimen (p < 0.000). However, there were no significant differences between the air abrasion and air abrasion + laser groups and the silica coating and laser groups. Specimens treated with laser showed lower bond strengths irrespective of the resin cement used. CEC and/or PF showed higher bond strengths than RXU for each surface treatment group. No significant relationship was observed between the roughness and the bond strength. The results of this study showed that all the surface treatments, except for laser irradiation, were suitable for treating zirconia ceramics. Cement selection was found to be more important than surface treatment, and phosphate monomer-containing cements were suitable for cementing zirconia.


Zirconium oxide Surface treatment Surface roughness AFM SEM Bond strength 


  1. 1.
    Cavalcanti AN, Foxton RM, Watson TF, Oliveira MT, Giannini M, Marchi GM (2009) Y-TZP ceramics: key concepts for clinical application. Oper Dent 34:344–351. doi:10.2341/08-79 PubMedCrossRefGoogle Scholar
  2. 2.
    Meyenberg KH, Lüthy H, Schärer P (1995) Zirconia posts: a new all-ceramic concept for nonvital abutment teeth. J Esthet Dent 7:73–80. doi:10.1111/j.1708-8240.1995.tb00565.x PubMedCrossRefGoogle Scholar
  3. 3.
    Little DA, Graham L (2004) Zirconia: simplifying esthetic dentistry. Compend Contin Educ Dent 25:490–494PubMedGoogle Scholar
  4. 4.
    Christel P, Meunier A, Heller M, Torre JP, Peille CN (1989) Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia. J Biomed Mater Res 23:45–61PubMedCrossRefGoogle Scholar
  5. 5.
    Piconi C, Maccauro G (1999) Zirconia as a ceramic biomaterial. Biomaterials 20:1–25. doi:10.1016/S0142-9612(98)00010-6 PubMedCrossRefGoogle Scholar
  6. 6.
    Tinschert J, Zwez D, Marx R, Anusavice KJ (2000) Structural reliability of alumina-, feldspar-, leucite-, mica- and zirconia-based ceramics. J Dent 28:529–535. doi:10.1016/S0300-5712(00)00030-0 PubMedCrossRefGoogle Scholar
  7. 7.
    Filser F, Kocher P, Weibel F, Lüthy H, Schärer P, Gauckler LJ (2001) Reliability and strength of all-ceramic dental restorations fabricated by direct ceramic machining (DCM). Int J Comput Dent 4:89–106PubMedGoogle Scholar
  8. 8.
    Sundh A, Molin M, Sjogren G (2005) Fracture resistance of yttrium oxide partially-stabilized zirconia all-ceramic bridges after veneering and mechanical fatigue testing. Dent Mater 21:476–482. doi:10.1016/ PubMedCrossRefGoogle Scholar
  9. 9.
    Burke FJ, Fleming GJ, Nathanson D, Marquis PM (2002) Are adhesive technologies needed to support ceramics? An assessment of the current evidence. J Adhes Dent 4:7–22PubMedGoogle Scholar
  10. 10.
    Derand T, Molin M, Kvam K (2005) Bond strength of composite luting cement to zirconia ceramic surfaces. Dent Mater 21:1158–1162. doi:10.1016/ PubMedCrossRefGoogle Scholar
  11. 11.
    Kern M, Wegner SM (1998) Bonding to zirconia ceramic: adhesion methods and their durability. Dent Mater 14:64–71. doi:10.1016/S0109-5641(98)00011-6 PubMedCrossRefGoogle Scholar
  12. 12.
    Lüthy H, Loeffel O, Hammerle CH (2006) Effect of thermocycling on bond strength of luting cements to zirconia ceramic. Dent Mater 22:195–200. doi:10.1016/ PubMedCrossRefGoogle Scholar
  13. 13.
    Mirmohammadi H, Aboushelib MN, Salameh Z, Feilzer AJ, Kleverlaan CJ (2010) Innovations in bonding to zirconia based ceramics: part III. Phosphate monomer resin cements. Dent Mater 26:786–792. doi:10.1016/ PubMedCrossRefGoogle Scholar
  14. 14.
    de Oyagüe RC, Monticelli F, Toledano M, Osorio E, Ferrari M, Osorio R (2009) Influence of surface treatments and resin cement selection on bonding to densely-sintered zirconium-oxide ceramic. Dent Mater 25:172–179. doi:10.1016/ PubMedCrossRefGoogle Scholar
  15. 15.
    Senyilmaz DP, Palin WM, Shortall AC, Burke FJ (2007) The effect of surface preparation and luting agent on bond strength to a zirconium-based ceramic. Oper Dent 32:623–630. doi:10.2341/07-14 PubMedCrossRefGoogle Scholar
  16. 16.
    D’Amario M, Campidoglio M, Morresi AL, Luciani L, Marchetti E, Baldi M (2010) Effect of thermocycling on the bond strength between dual-cured resin cements and zirconium-oxide ceramics. J Oral Sci 52:425–430PubMedCrossRefGoogle Scholar
  17. 17.
    Kumbuloglu O, Lassila LV, User A, Vallittu PK (2006) Bonding of resin composite luting cements to zirconium oxide by two air-particle abrasion methods. Oper Dent 31:248–255. doi:10.2341/05-22 PubMedCrossRefGoogle Scholar
  18. 18.
    Oyagüe RC, Monticelli F, Toledano M, Osorio E, Ferrari M, Osorio R (2009) Effect of water aging on microtensile bond strength of dual-cured resin cements to pre-treated sintered zirconium-oxide ceramics. Dent Mater 25:392–399. doi:10.1016/ PubMedCrossRefGoogle Scholar
  19. 19.
    Wegner SM, Kern M (2000) Long-term resin bond strength to zirconia ceramic. J Adhes Dent 2:139–147PubMedGoogle Scholar
  20. 20.
    Kern M (2009) Resin bonding to oxide ceramics for dental restorations. J Adhes Sci Technol 23:1097–1111. doi:10.1163/156856109X432721 CrossRefGoogle Scholar
  21. 21.
    Piwowarczyk A, Lauer HC, Sorensen JA (2005) The shear bond strength between luting cements and zirconia ceramics after two pre-treatments. Oper Dent 30:382–388PubMedGoogle Scholar
  22. 22.
    Radovic I, Monticelli F, Goracci G, Vulicevic ZR, Ferrari M (2008) Self-adhesive resin cements: a literature review. J Adhes Dent 10:251–258PubMedGoogle Scholar
  23. 23.
    Luthardt RG, Holzhüter M, Sandkuhl O, Herold V, Schnapp JD, Kuhlisch E, Walter M (2002) Reliability and properties of ground Y-TZP-zirconia ceramics. J Dent Res 81:487–491. doi:10.1177/154405910208100711 PubMedCrossRefGoogle Scholar
  24. 24.
    Blatz MB, Sadan A, Kern M (2003) Resin-ceramic bonding: a review of the literature. J Prosthet Dent 89:268–274. doi:10.1067/mpr.2003.50 PubMedCrossRefGoogle Scholar
  25. 25.
    Atsu SS, Kilicarslan MA, Kucukesmen HC, Aka PS (2006) Effect of zirconium- oxide ceramic surface treatments on the bond strength to adhesive resin. J Prosthet Dent 95:430–436. doi:10.1016/j.prosdent.2006.03.016 PubMedCrossRefGoogle Scholar
  26. 26.
    Bottino MA, Valandro LF, Scotti R, Buso L (2005) Effect of surface treatments on the resin bond to zirconium-based ceramic. Int J Prosthodont 18:60–65. doi:10.1016/j.prosdent.2005.05.011 PubMedGoogle Scholar
  27. 27.
    Ozcan M, Nijhuis H, Valandro LF (2008) Effect of various surface conditioning methods on the adhesion of dual-cure resin cement with MDP functional monomer to zirconia after thermal aging. Dent Mater J 27:99–104. doi:10.4012/dmj.27.99 PubMedCrossRefGoogle Scholar
  28. 28.
    Wolfart M, Lehmann F, Wolfart S, Kern M (2007) Durability of the resin bond strength to zirconia ceramic after using different surface conditioning methods. Dent Mater 23:45–50. doi:10.1016/ PubMedCrossRefGoogle Scholar
  29. 29.
    Yang B, Barloi A, Kern M (2010) Influence of air-abrasion on zirconia ceramic bonding using an adhesive composite resin. Dent Mater 26:44–50. doi:10.1016/ PubMedCrossRefGoogle Scholar
  30. 30.
    van As G (2004) Erbium lasers in dentistry. Dent Clin North Am 48:1017–1059PubMedCrossRefGoogle Scholar
  31. 31.
    Chinelatti MA, Ramos RP, Chimello DT, Corona SA, Pécora JD, Dibb RG (2006) Influence of Er:YAG laser on cavity preparation and surface treatment in microleakage of composite resin restorations. Photomed Laser Surg 24:214–218. doi:10.1089/pho.2006.24.214 PubMedCrossRefGoogle Scholar
  32. 32.
    Gökçe B, Ozpinar B, Dündar M, Cömlekoglu E, Sen BH, Güngör MA (2007) Bond strengths of all-ceramics: acid vs laser etching. Oper Dent 32:173–178. doi:10.2341/06-52 PubMedCrossRefGoogle Scholar
  33. 33.
    Shiu P, De Souza-Zaroni WC, Eduardo Cde P, Youssef MN (2007) Effect of feldspathic ceramic surface treatments on bond strength to resin cement. Photomed Laser Surg 25:291–296. doi:10.1089/pho.2007.2018 PubMedCrossRefGoogle Scholar
  34. 34.
    Cavalcanti AN, Pilecki P, Foxton RM, Watson TF, Oliveira MT, Gianinni M, Marchi GM (2009) Evaluation of the surface roughness and morphologic features of Y-TZP ceramics after different surface treatments. Photomed Laser Surg 27:473–479. doi:10.1089/pho.2008.2293 PubMedCrossRefGoogle Scholar
  35. 35.
    Yang B, Scharnberg M, Wolfart S, Quaas AC, Ludwig K, Adelung R, Kern M (2007) Influence of contamination on bonding to zirconia ceramic. J Biomed Mater Res B Appl Biomater 81:283–290PubMedCrossRefGoogle Scholar
  36. 36.
    Curtis AR, Wright AJ, Fleming GJ (2006) The influence of surface modification techniques on the performance of a Y-TZP dental ceramic. J Dent 34:195–206. doi:10.1016/j.jdent.2005.06.006 PubMedCrossRefGoogle Scholar
  37. 37.
    Qeblawi DM, Muñoz CA, Brewer JD, Monaco EA Jr (2010) The effect of zirconia surface treatment on flexural strength and shear bond strength to a resin cement. J Prosthet Dent 103:210–220. doi:10.1016/S0022-3913(10)60033-9 PubMedCrossRefGoogle Scholar
  38. 38.
    Özcan M, Kerkdijk S, Valandro L (2008) Comparison of resin cement adhesion to Y-TZP ceramic following manufacturers' instructions of the cements only. Clin Oral Investig 12:279–282. doi:10.1007/s00784-007-0151-y PubMedCrossRefGoogle Scholar
  39. 39.
    International Organization for Standardization, ISO TS 11405 (2003) Dental materials—testing of adhesion to tooth structure, pp 1–16Google Scholar
  40. 40.
    Gale MS, Darvell BW (1999) Thermal cycling procedures for laboratory testing of dental restorations. J Dent 27:89–99. doi:10.1016/S0300-5712(98)00037-2 PubMedCrossRefGoogle Scholar
  41. 41.
    Toledano M, Osorio R, Osorio E, Aguilera FS, Yamauti M, Pashley DH et al (2007) Durability of resin-dentin bonds:effects of direct/indirect exposure and storage media. Dent Mater 23:885–892PubMedCrossRefGoogle Scholar
  42. 42.
    May LG, Passos SP, Capelli DB, Ozcan M, Bottino MA, Valandro LF (2010) Effect of silica coating combined to a MDP-based primer on the resin bond to Y-TZP ceramic. J Biomed Mater Res B Appl Biomater 95:69–74. doi:10.1002/jbm.b.31684 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.Department of Prosthodontics, Faculty of DentistryAydın UniversityİstanbulTurkey
  2. 2.Department of Prosthodontics, Faculty of DentistrySelçuk UniversityKonyaTurkey

Personalised recommendations