Lasers in Medical Science

, Volume 28, Issue 4, pp 1057–1068 | Cite as

Optimal Er:YAG laser irradiation parameters for debridement of microstructured fixture surfaces of titanium dental implants

  • Yoichi TaniguchiEmail author
  • Akira AokiEmail author
  • Koji Mizutani
  • Yasuo Takeuchi
  • Shizuko Ichinose
  • Aristeo Atsushi Takasaki
  • Frank Schwarz
  • Yuichi Izumi
Original Article


Er:YAG laser (ErL) irradiation has been reported to be effective for treating peri-implant disease. The present study seeks to evaluate morphological and elemental changes induced on microstructured surfaces of dental endosseous implants by high-pulse-repetition-rate ErL irradiation and to determine the optimal irradiation conditions for debriding contaminated microstructured surfaces. In experiment 1, dual acid-etched microstructured implants were irradiated by ErL (pulse energy, 30–50 mJ/pulse; repetition rate, 30 Hz) with and without water spray and for used and unused contact tips. Experiment 2 compared the ErL treatment with conventional mechanical treatments (metal/plastic curettes and ultrasonic scalers). In experiment 3, five commercially available microstructures were irradiated by ErL light (pulse energy, 30–50 mJ/pulse; pulse repetition rate, 30 Hz) while spraying water. In experiment 4, contaminated microstructured surfaces of three failed implants were debrided by ErL irradiation. After the experiments, all treated surfaces were assessed by stereomicroscopy, scanning electron microscopy (SEM), and/or energy-dispersive X-ray spectroscopy (EDS). The stereomicroscopy, SEM, and EDS results demonstrate that, unlike mechanical treatments, ErL irradiation at 30 mJ/pulse and 30 Hz with water spray induced no color or morphological changes to the microstructures except for the anodized implant surface, which was easily damaged. The optimized irradiation parameters effectively removed calcified deposits from contaminated titanium microstructures without causing substantial thermal damage. ErL irradiation at pulse energies below 30 mJ/pulse (10.6 J/cm2/pulse) and 30 Hz with water spray in near-contact mode seems to cause no damage and to be effective for debriding microstructured surfaces (except for anodized microstructures).


Er:YAG laser High pulse repetition rate Implant Peri-implantitis Titanium Microstructure 



This study was supported in part by a grant from the Global Center of Excellence Program for International Research Center for Molecular Science in Tooth and Bone Diseases at Tokyo Medical and Dental University and by a Grant-in-Aid for Scientific Research (C) (No. 22592308) to A.A. from the Ministry of Education, Culture, Sports, Science and Technology of Japan. The authors wish to thank Drs. Yasushi Yoda, Kenichiro Ejiri, and Masanori Sawabe of Tokyo Medical and Dental University, Tokyo, Japan for their kind help. The Osseotite® implants were provided by Bioment 3i Japan (Osaka, Japan).


  1. 1.
    Subramani K, Jung R, Molenberg A, Hammerle C (2009) Biofilm on dental implants: a review of the literature. Int J Oral Maxillofac Implants 24:616–626PubMedGoogle Scholar
  2. 2.
    Zitzmann NU, Berglundh T (2008) Definition and prevalence of peri-implant diseases. J Clin Periodontol 35:286–291PubMedCrossRefGoogle Scholar
  3. 3.
    Roos-Jansåker AM, Lindahl C, Renvert H, Renvert S (2006) Nine- to fourteen-year follow-up of implant treatment. Part II: presence of peri-implant lesions. J Clin Periodontol 33:290–295PubMedCrossRefGoogle Scholar
  4. 4.
    Fransson C, Lekholm U, Jemt T, Berglundh T (2005) Prevalence of subjects with progressive bone loss at implants. Clin Oral Implants Res 16:440–446PubMedCrossRefGoogle Scholar
  5. 5.
    Lang N, Wilson T, Corbet E (2000) Biological complications with dental implants: their prevention, diagnosis and treatment. Clin Oral Implants Res 11:146–155PubMedCrossRefGoogle Scholar
  6. 6.
    Claffey N, Clarke E, Polyzois I, Renvert S (2008) Surgical treatment of peri-implantitis. J Clin Periodontol 35:316–332PubMedCrossRefGoogle Scholar
  7. 7.
    Renvert S, Roos-Jansåker A, Claffey N (2008) Non-surgical treatment of peri-implant mucositis and peri-implantitis: a literature review. J Clin Periodontol 35:305–315PubMedCrossRefGoogle Scholar
  8. 8.
    Renvert S, Polyzois I, Maguire R (2009) Re-osseointegration on previously contaminated surfaces: a systematic review. Clin Oral Implants Res 20:216–227PubMedCrossRefGoogle Scholar
  9. 9.
    Kreisler M, Kohnen W, Christoffers A, Götz H, Jansen B, Duschner H, d'Hoedt B (2005) In vitro evaluation of the biocompatibility of contaminated implant surfaces treated with an Er:YAG laser and an air powder system. Clin Oral Implants Res 16:36–43PubMedCrossRefGoogle Scholar
  10. 10.
    Trejo P, Bonaventura G, Weng D, Caffesse R, Bragger U, Lang N (2006) Effect of mechanical and antiseptic therapy on peri-implant mucositis: an experimental study in monkeys. Clin Oral Implants Res 17:294–304PubMedCrossRefGoogle Scholar
  11. 11.
    Schwarz F, Sculean A, Rothamel D, Schwenzer K, Georg T, Becker J (2005) Clinical evaluation of an Er:YAG laser for nonsurgical treatment of peri-implantitis: a pilot study. Clin Oral Implants Res 16:44–52PubMedCrossRefGoogle Scholar
  12. 12.
    Schwarz F, Rothamel D, Sculean A, Georg T, Scherbaum W, Becker J (2003) Effects of an Er:YAG laser and the Vector ultrasonic system on the biocompatibility of titanium implants in cultures of human osteoblast-like cells. Clin Oral Implants Res 14:784–792PubMedCrossRefGoogle Scholar
  13. 13.
    Massaro C, Rotolo P, De Riccardis F, Milella E, Napoli A, Wieland M, Textor M, Spencer N, Brunette D (2002) Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition. J Mater Sci Mater Med 13:535–548PubMedCrossRefGoogle Scholar
  14. 14.
    Duarte PM, Reis AF, de Freitas PM, Ota-Tsuzuki C (2009) Bacterial adhesion on smooth and rough titanium surfaces after treatment with different instruments. J Periodontol 80:1824–1832PubMedCrossRefGoogle Scholar
  15. 15.
    Ando Y, Aoki A, Watanabe H, Ishikawa I (1996) Bactericidal effect of erbium YAG laser on periodontopathic bacteria. Lasers Surg Med 19:190–200PubMedCrossRefGoogle Scholar
  16. 16.
    Romanos GE, Everts H, Nentwig GH (2000) Effects of diode and Nd:YAG laser irradiation on titanium discs: a scanning electron microscope examination. J Periodontol 71:810–815PubMedCrossRefGoogle Scholar
  17. 17.
    Aoki A, Sasaki KM, Watanabe H, Ishikawa I (2000) (2004) Lasers in nonsurgical periodontal therapy. Periodontol 36:59–97CrossRefGoogle Scholar
  18. 18.
    Aoki A, Ando Y, Watanabe H, Ishikawa I (1994) In vitro studies on laser scaling of subgingival calculus with an erbium:YAG laser. J Periodontol 65:1097–1106PubMedCrossRefGoogle Scholar
  19. 19.
    Ishikawa I, Aoki A, Takasaki AA, Mizutani K, Sasaki KM, Izumi Y (2009) Application of lasers in periodontics: true innovation or myth? Periodontol 2000 50:90–126PubMedCrossRefGoogle Scholar
  20. 20.
    Schwarz F, Aoki A, Sculean A, Becker J (2009) The impact of laser application on periodontal and peri-implant wound healing. Periodontol 2000 51:79–108PubMedCrossRefGoogle Scholar
  21. 21.
    Schwarz F, Aoki A, Becker J, Sculean A (2008) Laser application in non-surgical periodontal therapy: a systematic review. J Clin Periodontol 35:29–44PubMedCrossRefGoogle Scholar
  22. 22.
    Robertson CW, Williams D (1971) Lambert absorption coefficients of water in the infrared. J Opt Soc Am 61:1316–1320CrossRefGoogle Scholar
  23. 23.
    Hale GM, Querry MR (1973) Optical constants of water in the 200-nm to 200-µm wave-length region. Appl Optics 12:555–563CrossRefGoogle Scholar
  24. 24.
    Aoki A, Miura M, Akiyama F, Nakagawa N, Tanaka J, Oda S, Watanabe H, Ishikawa I (2000) In vitro evaluation of Er:YAG laser scaling of subgingival calculus in comparison with ultrasonic scaling. J Periodontal Res 35:266–277PubMedCrossRefGoogle Scholar
  25. 25.
    Aleksic V, Aoki A, Iwasaki K, Takasaki AA, Wang CY, Abiko Y, Ishikawa I, Izumi Y (2010) Low-level Er:YAG laser irradiation enhances osteoblast proliferation through activation of MAPK/ERK. Lasers Med Sci 25:559–569PubMedCrossRefGoogle Scholar
  26. 26.
    Akiyama F, Aoki A, Miura-Uchiyama M, Sasaki K, Ichinose S, Umeda M, Ishikawa I, Izumi Y (2011) In vitro studies of the ablation mechanism of periodontopathic bacteria and decontamination effect on periodontally diseased root surfaces by erbium:yttrium-aluminum-garnet laser. Lasers Med Sci 26:193–204. Erratum in: Lasers Med Sci 2011; 2026(2012): 2277PubMedCrossRefGoogle Scholar
  27. 27.
    Schwarz F, Sculean A, Georg T, Reich E (2001) Periodontal treatment with an Er:YAG laser compared to scaling and root planing. A controlled clinical study. J Periodontol 72:361–367PubMedCrossRefGoogle Scholar
  28. 28.
    Sculean A, Schwarz F, Berakdar M, Romanos GE, Arweiler NB, Becker J (2004) Periodontal treatment with an Er:YAG laser compared to ultrasonic instrumentation: a pilot study. J Periodontol 75:966–973PubMedCrossRefGoogle Scholar
  29. 29.
    Crespi R, Capparè P, Toscanelli I, Gherlone E, Romanos GE (2007) Effects of Er:YAG laser compared to ultrasonic scaler in periodontal treatment: a 2-year follow-up split-mouth clinical study. J Periodontol 78:1195–1200PubMedCrossRefGoogle Scholar
  30. 30.
    Gaspirc B, Skaleric U (2007) Clinical evaluation of periodontal surgical treatment with an Er:YAG laser: 5-year results. J Periodontol 78:1864–1871PubMedCrossRefGoogle Scholar
  31. 31.
    Schwarz F, Jepsen S, Herten M, Sager M, Rothamel D, Becker J (2006) Influence of different treatment approaches on non-submerged and submerged healing of ligature induced peri-implantitis lesions: an experimental study in dogs. J Clin Periodontol 33:584–595PubMedCrossRefGoogle Scholar
  32. 32.
    Takasaki AA, Aoki A, Mizutani K, Kikuchi S, Oda S, Ishikawa I (2007) Er:YAG laser therapy for peri-implant infection: a histological study. Lasers Med Sci 22:143–157PubMedCrossRefGoogle Scholar
  33. 33.
    Matsuyama T, Aoki A, Oda S, Yoneyama T, Ishikawa I (2003) Effects of the Er:YAG laser irradiation on titanium implant materials and contaminated implant abutment surfaces. J Clin Laser Med Surg 21:7–17PubMedCrossRefGoogle Scholar
  34. 34.
    Eguro T, Aoki A, Maeda T, Takasaki A, Hasegawa M, Ogawa M, Suzuki T, Yonemoto K, Ishikawa I, Izumi Y, Katsuumi I (2009) Energy output reduction and surface alteration of quartz and sapphire tips following Er:YAG laser contact irradiation for tooth enamel ablation. Lasers Surg Med 41:595–604PubMedCrossRefGoogle Scholar
  35. 35.
    Matthew J, Donachie (2000) Titanium: a technical guide. ASM International, Netherlands, pp 1–2Google Scholar
  36. 36.
    Aita H, Att W, Ueno T, Yamada M, Hori N, Iwasa F, Tsukimura N, Ogawa T (2009) Ultraviolet light-mediated photofunctionalization of titanium to promote human mesenchymal stem cell migration, attachment, proliferation and differentiation. Acta Biomater 5:3247–3257PubMedCrossRefGoogle Scholar
  37. 37.
    Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 31:431–432CrossRefGoogle Scholar
  38. 38.
    Pioletti DP, Takei H, Kwon SY, Wood D, Sung KL (1999) The cytotoxic effect of titanium particles phagocytosed by osteoblasts. J Biomed Mater Res 46:399–407PubMedCrossRefGoogle Scholar
  39. 39.
    Persson L, Araújo M, Berglundh T, Gröndahl K, Lindhe J (1999) Resolution of peri-implantitis following treatment. An experimental study in the dog. Clin Oral Implants Res 10:195–203PubMedCrossRefGoogle Scholar
  40. 40.
    Fini M, Cigada A, Rondelli G, Chiesa R, Giardino R, Giavaresi G, Nicoli Aldini N, Torricelli P, Vicentini B (1999) In vitro and in vivo behaviour of Ca- and P-enriched anodized titanium. Biomaterials 20:1587–1594PubMedCrossRefGoogle Scholar
  41. 41.
    Son WW, Zhu X, Shin HI, Ong JL, Kim KH (2003) In vivo histological response to anodized and anodized/hydrothermally treated titanium implants. J Biomed Mater Res B Appl Biomater 66:520–525PubMedCrossRefGoogle Scholar
  42. 42.
    Shin SI, Min HK, Park BH, Kwon YH, Park JB, Herr Y, Heo SJ, Chung JH (2011) The effect of Er:YAG laser irradiation on the scanning electron microscopic structure and surface roughness of various implant surfaces: an in vitro study. Lasers Med Sci 26:767–776PubMedCrossRefGoogle Scholar
  43. 43.
    Yamamoto A, Tanabe T, Katagi H, Yamamoto K (2009) Application of Er:YAG laser to peri-implantitis a clinical report. J Jpn Soc Laser Dent 20:81–87CrossRefGoogle Scholar
  44. 44.
    Albouy JP, Abrahamsson I, Persson LG, Berglundh T (2008) Spontaneous progression of peri-implantitis at different types of implants. An experimental study in dogs. I: clinical and radiographic observations. Clin Oral Implants Res 19:997–1002PubMedCrossRefGoogle Scholar
  45. 45.
    Albouy JP, Abrahamsson I, Persson LG, Berglundh T (2009) Spontaneous progression of ligatured induced peri-implantitis at implants with different surface characteristics. An experimental study in dogs II: histological observations. Clin Oral Implants Res 20:366–371PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2012

Authors and Affiliations

  • Yoichi Taniguchi
    • 1
    Email author
  • Akira Aoki
    • 1
    Email author
  • Koji Mizutani
    • 1
  • Yasuo Takeuchi
    • 1
  • Shizuko Ichinose
    • 2
  • Aristeo Atsushi Takasaki
    • 3
  • Frank Schwarz
    • 4
  • Yuichi Izumi
    • 1
    • 5
  1. 1.Department of Periodontology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityBunkyo-kuJapan
  2. 2.Instrumental Analysis Research Center for Life ScienceTokyo Medical and Dental UniversityTokyoJapan
  3. 3.Graduation program of Master Course in Clinical DentistryFederal University of Espirito SantoEspirito SantoBrazil
  4. 4.Department of Oral SurgeryHeinrich Heine UniversityDüsseldorfGermany
  5. 5.Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone DiseaseTokyo Medical and Dental UniversityTokyoJapan

Personalised recommendations