Lasers in Medical Science

, Volume 28, Issue 3, pp 901–909 | Cite as

Low-level laser therapy vs. pulsed electromagnetic field on neonatal rat calvarial osteoblast-like cells

  • Yusuf Emes
  • Kivanç Akça
  • Buket Aybar
  • Serhat Yalçın
  • Yeliz Çavuşoğlu
  • Uğur Baysal
  • Halim Işsever
  • Belir Atalay
  • Pervin Vural
  • Mine Ergüven
  • Murat Cavit Çehreli
  • Ayhan Bilir
Original Article


To compare the effects of pulsed electromagnetic field (PEMF) and low-level laser therapy (LLLT) on osteoblast cells in a cell culture model. Fifty thousand neonatal rat calvarial osteoblast-like cells per milliliter were seeded and 0.06 mT PEMF, 0.2 mT PEMF, and LLLT at 808 nm were applied for 24 and 96 h on the cells. To evaluate cellular proliferation and differentiation, specimens were examined for DNA synthesis, alkaline phosphatase (ALP) activity, cell numbers, and viability of the cells. Morphological appearances of the cells were observed using scanning electron microcopy after 24 and 96 h of incubation. At 24 and 96 h, the control group had a higher cell proliferation than 0.06 and 0.2 mT PEMF groups (p = 0.001). At 96 h, 0.2 mT PEMF group had higher cell proliferation rate than 0.06 mT PEMF and LLLT groups (p = 0.001). The cell count and cell viability in 0.2 mT PEMF group were higher than the 0.06-mT PEMF and LLLT groups, although these differences were not statistically significant at 96 h (p > 0.05). At 24 and 96 h, cell viability in the control group was higher than the test groups. Alkaline phosphatase levels of the groups were comparable in both time intervals (p > 0.05). 0.2 mT PEMF application on osteoblast-like cells led to cell proliferation and differentiation better than 0.06 mT PEMF and LLLT at 808 nm, although a remarkable effect of both PEMF and LLLT could not be detected. The ALP activity of 0.2 and 0.06 mT PEMF and LLLT were comparable.


Pulsed electromagnetic field Low-level laser therapy Osteoblast-like cells Cell proliferation and differentiation Alkaline phosphatase activity Scanning electron microscopy 


  1. 1.
    Bassett CA, Mitchell SN, Gaston SR (1982) Pulsing electromagnetic-field treatment in ununited fractures and failed arthrodeses. JAMA 247:623–628PubMedCrossRefGoogle Scholar
  2. 2.
    Borsalino G, Bagnacani M, Bettati E, Fornaciari F, Rocchi R, Uluhogian S, Ceccherelli G, Cadossi R, Traina GC (1988) Electrical stimulation of human femoral intertrochanteric osteotomies. Double-blind study. Clin Orthop Relat Res 237:256–263PubMedGoogle Scholar
  3. 3.
    Midura RJ, Ibiwoye MO, Powell KA, Sakai Y, Doehring T, Grabiner MD, Patterson TE, Zborowski M, Wolfman A (2005) Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies. J Orthop Res 23:1035–1046PubMedCrossRefGoogle Scholar
  4. 4.
    Bassett CA, Schinkascani M (1991) Long-term pulsed electromagnetic-field (PEMF) results in congenital pseudoarthrosis. Calcif Tissue Int 49:216–220PubMedCrossRefGoogle Scholar
  5. 5.
    Rubin CT, McLeod KJ, Lanyon LE (1989) Prevention of osteoporosis by pulsed electromagnetic fields. J Bone Joint Surg [Am] 71:411–417Google Scholar
  6. 6.
    Tabrah F, Hoffmeier M, Gilbert FJ, Batkin S, Bassett CA (1990) Bone density changes in osteoporosis-prone women exposed to pulsed electromagnetic fields (PEMFs). J Bone Miner Res 5:437–442PubMedCrossRefGoogle Scholar
  7. 7.
    Diniz P, Shomura K, Soejima K, Ito G (2002) Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts. Bioelectromag 23:398–405CrossRefGoogle Scholar
  8. 8.
    Tsai MT, Chang WH, Chang K, Hou RJ, Wu TW (2007) Pulsed electromagnetic fields affect osteoblast proliferation and differentiation in bone tissue engineering. Bioelectromagnetics 28:519–528PubMedCrossRefGoogle Scholar
  9. 9.
    Selvarnurugan N, Kwok S, Vasilov A, Jefcoat SC, Partridge NC (2007) Effects of BMP-2 and pulsed electromagnetic field (PEMF) on rat primary osteoblastic cell proliferation and gene expression. J Orthop Res 25:1213–1220CrossRefGoogle Scholar
  10. 10.
    Farndale RW, Murray JC (1985) Pulsed electromagnetic fields promote collagen production in bone marrow fibroblasts via athermal mechanisms. Calcif Tissue Int 37:178–182PubMedCrossRefGoogle Scholar
  11. 11.
    Aaron RK, Ciombor DM, Jolly G (1989) Stimulation of experimental endochondral ossification by low-energy pulsing electromagnetic fields. J Bone Miner Res 4:227–233PubMedCrossRefGoogle Scholar
  12. 12.
    Colacicco G, Pilla AA (1983) Electromagnetic modulation of biological processes: bicarbonate effect and mechanistic considerations in the Ca-uptake by embryonal chick tibia in vitro. Z Naturforsch [C] 5–6:465–467Google Scholar
  13. 13.
    Norton LA, Witt DW, Rovetti LA (1988) Pulsed electromagnetic fields alter phenotypic expression in chondroblasts in tissue culture. J Orthop Res 6:685–689PubMedCrossRefGoogle Scholar
  14. 14.
    Lohmann CH, Schwartz Z, Liu Y, Guerkov H, Dean DD, Simon B, Boyan BD (2000) Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. J Orthop Res 18:637–646PubMedCrossRefGoogle Scholar
  15. 15.
    Chang WH, Chen LT, Sun JS, Lin FH (2004) Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities. Bioelectromag 25:457–465CrossRefGoogle Scholar
  16. 16.
    Rochkind S, Rousso M, Nissan M, Villarreal M, Barr-Nea L, Rees DG (1989) Systemic effects of low-power laser irradiation on the peripheral and central nervous system, cutaneous wounds and burns. Lasers Surg Med 9:174–182PubMedCrossRefGoogle Scholar
  17. 17.
    Kemmotsu O, Sato K, Furomido H, Harada K, Takigawa C, Kaseno S (1991) Efficacy of low reactive-level laser therapy for pain attenuation of postherpetic neuralgia. Laser Therapy 3:1–75Google Scholar
  18. 18.
    Lizarelli RFZ, Lamano-Carvalho TL, Brentegani LG (1999) Histometrical evaluation of the healing of the dental alveolus in rats after irradiation with a low-powered GaAlAs laser. SPIE 3593:49–55CrossRefGoogle Scholar
  19. 19.
    Pretel H, Lizarelli RF, Ramalho LT (2007) Effect of low-level laser therapy on bone repair: histological study in rats. Lasers Surg Med 39:788–796PubMedCrossRefGoogle Scholar
  20. 20.
    Khadra M, Kasem N, Haanaes HR, Ellingsen JE, Lyngstadaas SP (2004) Enhancement of bone formation in rat calvarial bone defects using low-level laser therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97:693–700PubMedCrossRefGoogle Scholar
  21. 21.
    Vescosi P, Merigo E, Meleti M, Fornaini C, Nammour S, Manfredi M (2007) Nd:YAG laser biostimulation of bisphophonate associated necrosis of the jawbone with and without surgical treatment. Br J Oral Maxillofac Surg 45:628–632CrossRefGoogle Scholar
  22. 22.
    Akca K, Sarac E, Baysal U, Fanuscu M, Chang TL, Cehreli M (2007) Micro-morphologic changes around biophysically-stimulated titanium implants in overectomized rats. Head Face Med 16:3–28Google Scholar
  23. 23.
    Hanisch O, Tatakis DN, Boskovic MM, Rohrer MD, Wikesjo UM (1997) Bone formation and reosseointegration in peri-implantitis defects following surgical implantation of rhBMP. Int J Oral Maxillofac Implants 5:785–792Google Scholar
  24. 24.
    Ijiri K, Matsunaga S, Fukuyama K, Maeda S, Sakou T, Kitano M, Senba I (1996) The effect of pulsing electromagnetic field on bone ingrowth into a porous coated implant. Anticancer Res 16:2853–2856PubMedGoogle Scholar
  25. 25.
    Luben RA, Wong GL, Cohn DV (1976) Biochemical characterization with parathormone and calcitonin of isolated bone cells: provisional identification of osteoclasts and osteoblasts. Endocrinology 99:526–534PubMedCrossRefGoogle Scholar
  26. 26.
    Aybar B, Emes Y, Atalay B, Vural P, Kaya AS, Eren SN, Işsever H, Bilir A (2008) Effects of bone morphogenetic protein on neonatal rat calvarial osteoblast-like cells: an in vitro study. J Biomed Mater Res A 86:560–568PubMedGoogle Scholar
  27. 27.
    Schnoke M, Midura RJ (2007) Pulsed electromagnetic fields rapidly modulate intracellular signaling events in osteoblastic cells: comparison to parathyroid hormone and insulin. J Orthop Res 25:933–940PubMedCrossRefGoogle Scholar
  28. 28.
    Kana JS, Hutschenreiter G, Haina D, Waidelich W (1981) Effect of low-power density laser radiation on healing of open skin wound in rats. Arch Surg 116:293–296PubMedCrossRefGoogle Scholar
  29. 29.
    Honmura A, Yanase M, Obata J, Haruki E (1992) Therapeutic effect of Ga-Al-As diode laser irradiation on experimentally induced inflammation in rats. Lasers Surg Med 12:441–449PubMedCrossRefGoogle Scholar
  30. 30.
    Lam TS, Abergel RP, Meeker CA, Castel JC, Dwyer RM, Uitto J (1986) Laser stimulation of collagen synthesis in human skin fibroblast cultures. Lasers Life Sci 1:61–77Google Scholar
  31. 31.
    Dörtbudak O, Haas R, Mailath-Pokorny G (2000) Biostimulation of bone marrow cells with a diode soft laser. Clin Oral Impl Res 11:540–545CrossRefGoogle Scholar
  32. 32.
    Coombe AR, Ho CT, Darendeliler MA, Hunter N, Philips JR, Chapple CC, Yum LW (2001) The effects of low level laser irradiation on osteoblastic cells. Clin Orthop Res 4:3–14CrossRefGoogle Scholar
  33. 33.
    Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22:347–354PubMedCrossRefGoogle Scholar
  34. 34.
    Stein E, Koehn J, Sutter W, Wendtlandt G, Wanschitz F, Thurnher D, Baghestanian M, Turhani D (2008) Initial effects of low-level laser therapy on growth and differentiation of human osteoblast-like cells. Wien Klin Wochenschr 120:112–117PubMedCrossRefGoogle Scholar
  35. 35.
    Jakse N, Payer M, Tangl S, Berghold A, Kirmeier R, Lorenzoni M (2007) Influence of low-level laser treatment on bone regeneration and osseointegration of dental implants following sinus augmentation: an experimental study on sheep. Clin Oral Impl Res 18:517–524CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2012

Authors and Affiliations

  • Yusuf Emes
    • 1
  • Kivanç Akça
    • 2
  • Buket Aybar
    • 1
    • 9
  • Serhat Yalçın
    • 1
  • Yeliz Çavuşoğlu
    • 2
  • Uğur Baysal
    • 3
  • Halim Işsever
    • 4
  • Belir Atalay
    • 1
  • Pervin Vural
    • 5
  • Mine Ergüven
    • 6
  • Murat Cavit Çehreli
    • 7
  • Ayhan Bilir
    • 8
  1. 1.Department of Oral and Maxillofacial Surgery, Faculty of DentistryIstanbul UniversityIstanbulTurkey
  2. 2.Department of Prosthodontics, Faculty of DentistryHacettepe UniversityAnkaraTurkey
  3. 3.Department of Electrical and Electronics Engineeering, Faculty of EngineeringHacettepe UniversityAnkaraTurkey
  4. 4.Department of Public Health, Faculty of MedicineIstanbul UniversityIstanbulTurkey
  5. 5.Department of Biochemistry, Faculty of MedicineIstanbul UniversityIstanbulTurkey
  6. 6.Department of Biochemistry, Faculty of MedicineYeni Yüzyıl UniversityIstanbulTurkey
  7. 7.Department of Prosthodontics, Faculty of DentistryOrdu UniversityOrduTurkey
  8. 8.Department of Histology and Embriology, Faculty of MedicineIstanbul UniversityIstanbulTurkey
  9. 9.Department of Oral Surgery, Faculty of DentistryIstanbul UniversityÇapa/İstanbulTurkey

Personalised recommendations