Lasers in Medical Science

, Volume 28, Issue 3, pp 791–798 | Cite as

Irradiation of 850-nm laser light changes the neural activities in rat primary visual cortex

  • Xiao Y. Wu
  • Zong X. Mou
  • Wen S. Hou
  • Xiao L. Zheng
  • Jun P. Yao
  • Guan B. Shang
  • Zheng Q. Yin
Original Article

Abstract

Although infrared laser was proven to be an alternative approach for neural stimulation, there is very little known about the neural response to infrared laser irradiation in visual cortex. This study is to investigate the effect of near-infrared laser irradiation on neural activities at the cortex level. A 850-nm pigtailed diode laser was applied to stimulate the rat primary visual cortex while the horizontal black and white stripe pattern was used as standard visual stimulation to evoke visual-evoked potential (VEP). Both amplitude and latency of VEP P100 was measured with or without infrared pulse stimulation applied in rat primary visual cortex. Paired t test and one-way analysis of variance were used to evaluate the impact of infrared irradiation and its pulse width on the amplitudes and latencies of P100, respectively. The results from our preliminary study revealed that, the pulsed near-infrared laser depressed the VEP amplitude and shortened the latency of P100; with the increment of pulse width of infrared irradiation, further decline of VEP amplitude and much shortened latency of P100 were observed. The present work suggests that near-infrared laser irradiation can alter the neural activities in primary visual cortex transiently, and could provide a novel contactless artificial neural stimulus to brain cortex with high spatial selectivity.

Keywords

Near-infrared laser Neural stimulation Laser diode Visual-evoked potential (VEP) Primary visual cortex 

References

  1. 1.
    Richter CP, Matic AI, Wells J et al (2011) Neural stimulation with optical radiation. Laser Photonics Rev 5:68–80. doi:10.1002/lpor.200900044 CrossRefGoogle Scholar
  2. 2.
    Wells J, Kao C, Jansen ED et al (2005) Application of infrared light for in vivo neural stimulation. J Biomed Opt 10:064003–064012PubMedCrossRefGoogle Scholar
  3. 3.
    Tozburun S, Cilip CM, Lagoda GA, Burnett AL, Fried NM (2010) Continuous-wave infrared optical nerve stimulation for potential diagnostic applications. J Biomed Opt 15(5):055012–055015PubMedCrossRefGoogle Scholar
  4. 4.
    Wells J, Kao C, Konrad P, Milner T, Kim J, Mahadevan-Jansen A, Jansen ED (2007) Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophys J 93(7):2567–2580. doi:10.1529/biophysj.107.104786 PubMedCrossRefGoogle Scholar
  5. 5.
    Wells J, Konrad P, Kao C, Jansen ED, Mahadevan-Jansen A (2007) Pulsed laser versus electrical energy for peripheral nerve stimulation. J Neurosci Methods 163(2):326–337. doi:10.1016/j.jneumeth.2007.03.016 PubMedCrossRefGoogle Scholar
  6. 6.
    Izzo AD, Suh E, Pathria J, Walsh JT, Whitlon DS, Richter C-P (2007) Selectivity of neural stimulation in the auditory system: a comparison of optic and electric stimuli. J Biomed Opt 12(2):021008PubMedCrossRefGoogle Scholar
  7. 7.
    Izzo AD, Richter CP, Jansen ED, Walsh JT et al (2006) Laser stimulation of the auditory nerve. Lasers Surg Med 38(8):745–753PubMedCrossRefGoogle Scholar
  8. 8.
    Izzo AD, Walsh JT, Jansen ED, BendettM Webb J, Ralph H, Richter CP (2007) Optical parameter variability in laser nerve stimulation: a study of pulse duration, repetition rate, and wavelength. IEEE Trans Biomed Eng 54(6):1108–1114PubMedCrossRefGoogle Scholar
  9. 9.
    Fried NM, Lagoda GA, Scott NJ, Su L-M, Burnett AL (2008) Noncontact stimulation of the cavernous nerves in the rat prostate using a tunable-wavelength thulium fiber laser. J Endourol 22(3):409–414. doi:10.1089/end.2008.9996 PubMedCrossRefGoogle Scholar
  10. 10.
    Wesselmann U, Lin SF, Rymer WZ (1991) Effects of Q-switched Nd: YAG laser irradiation on neural impulse propagation: I. Spinal cord. Physiol Chem Phys Med NMR 23(2):67–80PubMedGoogle Scholar
  11. 11.
    Wells J, Kao C, Mariappan K et al (2005) Optical stimulation of neural tissue in vivo. Opt Lett 31:235–238Google Scholar
  12. 12.
    Teudt I, Nevel A, Izzo AD (2007) Optical stimulation of the facial nerve: a new monitoring technique? Laryngoscope 117(9):1641–1647. doi:10.1097/MLG.0b013e318074ec00 PubMedCrossRefGoogle Scholar
  13. 13.
    Nicolau RA, Martinez MS, Rigau J, Tomas J (2004) Effect of low power 655 nm diode laser irradiation on the neuromuscular junctions of the mouse diaphragm. Lasers Surg Med 34:277–284. doi:10.1002/lsm.20006 PubMedCrossRefGoogle Scholar
  14. 14.
    Nicolau RA, Martinez MS, Rigau J, Tomas J (2004) Neurotrans-mitter release changes induced by low power 830 nm diode laser irradiation on the neuromuscular junctions of the mouse. Lasers Surg Med 35:236–241. doi:10.1002/lsm.20087 PubMedCrossRefGoogle Scholar
  15. 15.
    Cayce JM, Kao C, Malphrus JD et al (2010) Infrared neural stimulation of thalamocortical brain slices. IEEE J Sel Top Quant 16(3):565–572CrossRefGoogle Scholar
  16. 16.
    Cayce JM, Friedman RM, Jansen ED et al (2011) Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo. NeuroImage 57(1):155–166PubMedCrossRefGoogle Scholar
  17. 17.
    Sharma SK, Kharkwal GB, Sajo M, Huang YY, De Taboada L, McCarthy T, Hamblin MR (2011) Dose response effects of 810 nm laser light on mouse primary cortical neurons. Lasers Surg Med 43(8):851–859. doi:10.1002/lsm.21100 PubMedCrossRefGoogle Scholar
  18. 18.
    Kataoka Y, Oda-Mochizuki N, Tamura Y, Cui Y, Yamada H (2003) Activation of potassium channels is possibly involved in inhibition of neurotransmission of the central nervous system by low-level near-infrared laser irradiation. Neurosci Res 46(suppl 1):143Google Scholar
  19. 19.
    Thut G, Northoff G, Ives JR et al (2003) Effects of single-pulse transcranial magnetic stimulation(TMS) on functional brain activity: a combined event-related TMS and evoked potential study. Clin Neurophysiol 114:2071–2080PubMedCrossRefGoogle Scholar
  20. 20.
    Thut G, Ives JR, Kampmann F et al (2005) A new device and protocol for combining TMS and online recordings of EEG and evoked potentials. J Neurosci Methods 141(2):207–217PubMedCrossRefGoogle Scholar
  21. 21.
    Paxinos G, Watson C (1996) The rat brain in stereotaxic coordinates, Compact 3rd Edition CD-Rom. Academic Press, San DiegoGoogle Scholar
  22. 22.
    Zhang K, Katz E, Kim DH et al (2010) Common-path optical coherence tomography guided fibre probe for spatially precise optical nerve stimulation. Electron Lett 46(2):118–120CrossRefGoogle Scholar
  23. 23.
    Clark VP, Fan S, Hillyard SA (1995) Identification of early visually evoked potential generators by retinotopic and opographic analysis. Hum Brain Mapp 2(3):170–187CrossRefGoogle Scholar
  24. 24.
    Shigeto H, Tobimatsu S, Yamamoto T et al (1998) Visual evoked cortical magnetic responses to checkerboard pattern reversal stimulation: a study on the neural generators of N75, P100 and N145. J Neurology Sci 156(2):186–194CrossRefGoogle Scholar
  25. 25.
    Vanni S, Tanskanen T, Seppa M et al (2001) Coinciding early activation of the human primary visual cortex and anteromedial cuneus. Proc Natl Acad Sci 98(5):2776–2780PubMedCrossRefGoogle Scholar
  26. 26.
    Chowdhury V, Morley JW, Coroneo MT (2004) Surface stimulation of the brain with a prototype array for a visual cortex prosthesis. J Clin Neurosci 11:750–755PubMedCrossRefGoogle Scholar
  27. 27.
    McCaughey RG, Chlebicki C, Wong B (2010) Novel wavelengths for laser nerve stimulation. Laser Surg Med 42:69–75CrossRefGoogle Scholar
  28. 28.
    Feng HJ, Kao C, Gallagher MJ et al (2010) Alteration of GABAergic neurotransmission by pulsed infrared laser stimulation. J Neurosci Methods 192:110–114PubMedCrossRefGoogle Scholar
  29. 29.
    Ahmed NA, Radwan NM, Ibrahim KM et al (2008) Effect of three different intensities of infrared laser energy on the levels of amino acid neurotransmitters in the cortex and hippocampus of rat brain. Photomed Laser Surg 26:479–488. doi:/abs/10.1089/pho.2007.2190 PubMedCrossRefGoogle Scholar
  30. 30.
    Orchardson R, Peacock JM, Witters CJ (1997) Effect of pulsed Nd: YAG laser radiation on action potential conduction in isolated mammalian spinal nerves. Laser Surg Med 21:142–148CrossRefGoogle Scholar
  31. 31.
    Reichenbach A, Whittingstall K, Thielscher A (2011) Effects of transcranial magnetic stimulation on visual evoked potentials in a visual suppression task. NeuroImage 54(2):1375–1384PubMedCrossRefGoogle Scholar
  32. 32.
    Rajguru SM, Matic AI, Robinson AM, Fishman AJ et al (2010) Optical cochlear implants: evaluation of surgical approach and laser parameters in cats. Hear Res 269(1–2):102–111PubMedCrossRefGoogle Scholar
  33. 33.
    Kogure S, Takahashi S, Saito N, Kozuka K, Matsuda Y (2010) Effects of low-power laser irradiation on the threshold of electrically induced paroxysmal discharge in rabbit hippocampus CA1. Lasers Med Sci 25(1):79–86PubMedCrossRefGoogle Scholar
  34. 34.
    Wenzel GI, Balster S, Zhang K, Lim HH, Reich U et al (2009) Green laser light activates the inner ear. J Biomed Opt 14(4):044007PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2012

Authors and Affiliations

  • Xiao Y. Wu
    • 1
  • Zong X. Mou
    • 1
  • Wen S. Hou
    • 1
  • Xiao L. Zheng
    • 1
  • Jun P. Yao
    • 1
  • Guan B. Shang
    • 1
  • Zheng Q. Yin
    • 2
  1. 1.Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering CollegeChongqing UniversityChongqingChina
  2. 2.Department of OphthalmologySouthwest HospitalChongqingChina

Personalised recommendations