Lasers in Medical Science

, Volume 28, Issue 3, pp 777–783

Zymographic and ultrastructural evaluations after low-level laser irradiation on masseter muscle of HRS/J strain mice

  • Mamie Mizusaki Iyomasa
  • Elen Camargo Rizzi
  • Juliane Caroline Leão
  • João Paulo Mardegan Issa
  • Fernando José Dias
  • Yamba Carla Lara Pereira
  • Maria José Vieira Fonseca
  • Fabiana Testa Moura de Carvalho Vicentini
  • Ii-sei Watanabe
Original Article

Abstract

Low-level laser therapy (LLLT) has been widely used in the treatment of the stomatognathic system dysfunction; however, its biological effect remains poorly understood. This study evaluated the effect of LLLT (GaAlAs, 780 nm, 20 J/cm², 40 mW) on masseter muscle of HRS/J mice after different numbers of laser irradiations (three, six, and ten) for 20 s in alternate days. Three experimental groups were defined according to the number of laser irradiations and three control groups (n = 5) were used. On the third day after the last irradiation, all animals were killed and the masseter muscle was removed and processed for the following analysis: (a) transmission electron microscopy, (b) zymography, (c) immunohistochemistry for vascular endothelial growth factor (VEGF) and VEGFR-2. The results showed: (a) with six laser applications, a dilation of T tubules, and sarcoplasmic reticulum cistern, increased pinocytosed vesicles in the endothelium; with ten laser applications, few pinocytic vesicles in the endothelium and condensed mitochondria. (b) Under the conditions of this study, the synthesis of other matrix metalloproteinases was not observed, only the MMP-2 and -9. (c) After ten laser irradiations, immunostaining was observed only for VEGFR-2. We conclude that after six laser applications, ultrastructural changes may facilitate the Ca+2 transfer to cytosol and increase the fluid transport from one surface to another. The ultrastructural changes and no immunostaining for VEGF with ten applications may decrease the metabolic activity as well as damage the angiogenic process, suggesting that an effective number of laser applications may be less than ten, associating to this therapy a better cost–benefit.

Keywords

Low-level laser therapy Masseter muscle Transmission electron microscopy Zymography VEGF VEGFR-2 

References

  1. 1.
    Reis SR, Medrado AP, Marchionni AM, Figueira C, Fracassi LD, Knop LA (2008) Effect of 670-nm laser therapy and dexamethasone on tissue repair: a histological and ultrastructural study. Photomed Laser Surg 26:307–313PubMedCrossRefGoogle Scholar
  2. 2.
    Núñez SC, Garcez AS, Suzuki SS, Ribeiro MS (2006) Management of mouth opening in patients with temporomandibular disorders through low-level laser therapy and transcutaneous electrical neural stimulation. Photomed Laser Surg 24:45–49PubMedCrossRefGoogle Scholar
  3. 3.
    Lopes-Martins RA, Marcos RL, Leonardo PS, Prianti AC, Muscará MN, Aimbire F, Frigo L, Iversen VV, Bjordal JM (2006) Effect of low-level laser (Ga–Al–As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J Appl Physiol 101:283–288PubMedCrossRefGoogle Scholar
  4. 4.
    de Almeida P, Lopes-Martins R, Tomazoni SS, Silva JA, de Carvalho PET, Bjordal JM, Leal Junior EC (2011) Low-level laser therapy improves skeletal muscle performance, decreases skeletal muscle damage and modulates mRNA expression of COX-1 and COX-2 in a dose-dependent manner. Photochem Photobiol 87:1159–1163PubMedCrossRefGoogle Scholar
  5. 5.
    Leal Junior EC, Lopes-Martins RA, de Almeida P, Ramos L, Iversen VV, Bjordal JM (2010) Effect of low-level laser therapy (GaAs 904 nm) in skeletal muscle fatigue and biochemical markers of muscle damage in rats. Eur J Appl Physiol 108:1083–1088PubMedCrossRefGoogle Scholar
  6. 6.
    Shinozaki S, Ohnishi H, Hama K, Kita H, Yamamoto H, Osawa H, Sato K, Tamada K, Mashima H, Sugano K (2008) Indian hedgehog promotes the migration of rat activated pancreatic stellate cells by increasing membrane type-1 matrix metalloproteinase on the plasma membrane. J Cell Physiol 216:38–46PubMedCrossRefGoogle Scholar
  7. 7.
    de Medeiros JS, Vieira GF, Nishimura PY (2005) Laser application effects on the bite strength of the masseter muscle, as an orofacial pain treatment. Photomed Laser Surg 23:373–376PubMedCrossRefGoogle Scholar
  8. 8.
    Emshoff R, Bösch R, Pümpel E, Schöning H, Strobl H (2008) Low-level laser therapy for treatment of temporomandibular joint pain: a double-blind and placebo-controlled trial. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:452–456PubMedCrossRefGoogle Scholar
  9. 9.
    Airaksinen O, Kolari PJ, Hietanen M, von Nandelstradh P, Põntinen PJ (1993) Low power lasers in physical therapy: measurement of optical output power of devices. Acupunct Electrother Res 18:9–16PubMedGoogle Scholar
  10. 10.
    Haas AF, Isseroff RR, Wheeland RG, Rood PA, Graves PJ (1990) Low-energy helium-neon laser irradiation increases the motility of cultured human keratinocytes. J Invest Dermatol 94:822–826PubMedCrossRefGoogle Scholar
  11. 11.
    Rocha Júnior AM, Vieira BJ, de Andrade LC, Aarestrup FM (2009) Low-level laser therapy increases transforming growth factor-beta2 expression and induces apoptosis of epithelial cells during the tissue repair process. Photomed Laser Surg 27:303–307PubMedCrossRefGoogle Scholar
  12. 12.
    Pikkula BM, Chang DW, Nelson JS, Anvari B (2005) Comparison of 585 and 595 nm laser-induced vascular response of normal in vivo human skin. Lasers Surg Med 36:117–123PubMedCrossRefGoogle Scholar
  13. 13.
    Karu T, Pyatibrat L, Kalendo G (1995) Irradiation with He–Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol B 27:219–223PubMedCrossRefGoogle Scholar
  14. 14.
    Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84:1091–1099PubMedCrossRefGoogle Scholar
  15. 15.
    Shefer G, Barash I, Oron U, Halevy O (2003) Low-energy laser irradiation enhances de novo protein synthesis via its effects on translation-regulatory proteins in skeletal muscle myoblasts. Biochim Biophys Acta 1593:131–139PubMedCrossRefGoogle Scholar
  16. 16.
    Rizzi CF, Mauriz JL, Freitas Corrêa DS, Moreira AJ, Zettler CG, Filippin LI, Marroni NP, González-Gallego J (2006) Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. Lasers Surg Med 38:704–713PubMedCrossRefGoogle Scholar
  17. 17.
    Maxwell L, Carlson D, McNamara JJ, Faulkner J (1981) Adaptation of the masseter and temporalis muscles following alteration in length, with or without surgical detachment. Anat Rec 200:127–137PubMedCrossRefGoogle Scholar
  18. 18.
    Kitagawa Y, Mitera K, Ogasawara T, Nojyo Y, Miyauchi K, Sano K (2004) Alterations in enzyme histochemical characteristics of the masseter muscle caused by long-term soft diet in growing rabbits. Oral Dis 10:271–276PubMedCrossRefGoogle Scholar
  19. 19.
    Iyomasa DM, Garavelo I, Iyomasa MM, Watanabe IS, Issa JP (2009) Ultrastructural analysis of the low level laser therapy effects on the lesioned anterior tibial muscle in the gerbil. Micron 40:413–418PubMedCrossRefGoogle Scholar
  20. 20.
    Kossodo S, Wong WR, Simon G, Kochevar IE (2004) Effects of UVR and UVR-induced cytokines on production of extracellular matrix proteins and proteases by dermal fibroblasts cultured in collagen gels%. Photochem Photobiol 79:86–93PubMedGoogle Scholar
  21. 21.
    Lahmann C, Young AR, Wittern KP, Bergemann J (2001) Induction of mRNA for matrix metalloproteinase 1 and tissue inhibitor of metalloproteinases 1 in human skin in vivo by solar simulated radiation. Photochem Photobiol 73:657–663PubMedCrossRefGoogle Scholar
  22. 22.
    Fisher GJ, Wang ZQ, Datta SC, Varani J, Kang S, Voorhees JJ (1997) Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med 337:1419–1428PubMedCrossRefGoogle Scholar
  23. 23.
    Fisher GJ, Datta SC, Talwar HS, Wang ZQ, Varani J, Kang S, Voorhees JJ (1996) Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 379:335–339PubMedCrossRefGoogle Scholar
  24. 24.
    Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516PubMedCrossRefGoogle Scholar
  25. 25.
    Zucker S, Pei D, Cao J, Lopez-Otin C (2003) Membrane type-matrix metalloproteinases (MT-MMP). Curr Top Dev Biol 54:1–74PubMedCrossRefGoogle Scholar
  26. 26.
    Byrne AM, Bouchier-Hayes DJ, Harmey JH (2005) Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med 9:777–794PubMedCrossRefGoogle Scholar
  27. 27.
    Hudlicka O, Brown MD (2009) Adaptation of skeletal muscle microvasculature to increased or decreased blood flow: role of shear stress, nitric oxide and vascular endothelial growth factor. J Vasc Res 46:504–512PubMedCrossRefGoogle Scholar
  28. 28.
    Yen P, Finley SD, Engel-Stefanini MO, Popel AS (2011) A two-compartment model of VEGF distribution in the mouse. PLoS One 6:e27514PubMedCrossRefGoogle Scholar
  29. 29.
    Giacca M, Zacchigna S (2012) VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Ther 19:622–629PubMedCrossRefGoogle Scholar
  30. 30.
    Gao F, Chen XL, Wei P, Gao HJ, Liu YX (2001) Expression of matrix metalloproteinase-2, tissue inhibitors of metalloproteinase-1, -3 at the implantation site of rhesus monkey during the early stage of pregnancy. Endocrine 16:47–54PubMedCrossRefGoogle Scholar
  31. 31.
    Wu EC, Wong BJ (2008) Lasers and optical technologies in facial plastic surgery. Arch Facial Plast Surg 10:381–390PubMedCrossRefGoogle Scholar
  32. 32.
    Meireles GC, Santos JN, Chagas PO, Moura AP, Pinheiro AL (2008) Effectiveness of laser photobiomodulation at 660 or 780 nanometers on the repair of third-degree burns in diabetic rats. Photomed Laser Surg 26:47–54PubMedCrossRefGoogle Scholar
  33. 33.
    Medrado AR, Pugliese LS, Reis SR, Andrade ZA (2003) Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Lasers Surg Med 32:239–244PubMedCrossRefGoogle Scholar
  34. 34.
    Watanabe I, Yamada E (1983) The fine structure of lamellated nerve endings found in the rat gingiva. Arch Histol Jpn 46:173–182PubMedCrossRefGoogle Scholar
  35. 35.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  36. 36.
    Rizzi É, Issa JP, Dias FJ, Leão JC, Regalo SC, Siéssere S, Watanabe IS, Iyomasa MM (2010) Low-level laser intensity application in masseter muscle for treatment purposes. Photomed Laser Surg 28(Suppl 2):S31–S35PubMedGoogle Scholar
  37. 37.
    Tafur J, Mills PJ (2008) Low-intensity light therapy: exploring the role of redox mechanisms. Photomed Laser Surg 26:323–328PubMedCrossRefGoogle Scholar
  38. 38.
    Silveira PC, Streck EL, Pinho RA (2007) Evaluation of mitochondrial respiratory chain activity in wound healing by low-level laser therapy. J Photochem Photobiol B 86:279–282PubMedCrossRefGoogle Scholar
  39. 39.
    Wilden L, Karthein R (1998) Import of radiation phenomena of electrons and therapeutic low-level laser in regard to the mitochondrial energy transfer. J Clin Laser Med Surg 16:159–165PubMedGoogle Scholar
  40. 40.
    Tullberg M, Alstergren PJ, Ernberg MM (2003) Effects of low-power laser exposure on masseter muscle pain and microcirculation. Pain 105:89–96PubMedCrossRefGoogle Scholar
  41. 41.
    Leão JC, Issa JP, Pitol DL, Rizzi EC, Dias FJ, Siéssere S, Regalo SC, Iyomasa MM (2011) Histomorphological and angiogenic analyzes of skin epithelium after low laser irradiation in hairless mice. Anat Rec (Hoboken) 294:1592–1600CrossRefGoogle Scholar
  42. 42.
    Vicentini FT, Simi TR, Del Ciampo JO, Wolga NO, Pitol DL, Iyomasa MM, Bentley MV, Fonseca MJ (2008) Quercetin in w/o microemulsion: in vitro and in vivo skin penetration and efficacy against UVB-induced skin damages evaluated in vivo. Eur J Pharm Biopharm 69:948–957PubMedCrossRefGoogle Scholar
  43. 43.
    Dias FJ, Issa JP, Vicentini FT, Fonseca MJ, Leão JC, Siéssere S, Regalo SC, Iyomasa MM (2011) Effects of low-level laser therapy on the oxidative metabolism and matrix proteins in the rat masseter muscle. Photomed Laser Surg 29:677–684PubMedCrossRefGoogle Scholar
  44. 44.
    Audet GN, Meek TH, Garland T, Olfert IM (2011) Expression of angiogenic regulators and skeletal muscle capillarity in selectively bred high aerobic capacity mice. Exp Physiol 96:1138–1150PubMedGoogle Scholar
  45. 45.
    Pereira LB, Chimello DT, Wimmers Ferreira MR, Bachmann L, Rosa AL, Bombonato-Prado KF (2012) Low-level laser therapy influences mouse odontoblast-like cell response in vitro. Photomed Laser Surg 30:206–213PubMedCrossRefGoogle Scholar
  46. 46.
    Rácz E, de Leeuw J, Baerveldt EM, Kant M, Neumann HA, van der Fits L, Prens EP (2010) Cellular and molecular effects of pulsed dye laser and local narrow-band UVB therapy in psoriasis. Lasers Surg Med 42:201–210PubMedCrossRefGoogle Scholar
  47. 47.
    Hsieh YL, Chou LW, Chang PL, Yang CC, Kao MJ, Hong CZ (2012) Low-level laser therapy alleviates neuropathic pain and promotes function recovery in rats with chronic constriction injury-possible involvements in hypoxia-inducible factor 1α (HIF-1α). J Comp Neurol. In pressGoogle Scholar
  48. 48.
    Bossini PS, Rennó AC, Ribeiro DA, Fangel R, Peitl O, Zanotto ED, Parizotto NA (2011) Biosilicate® and low-level laser therapy improve bone repair in osteoporotic rats. J Tissue Eng Regen Med 5:229–237PubMedCrossRefGoogle Scholar
  49. 49.
    Renno AC, Iwama AM, Shima P, Fernandes KR, Carvalho JG, De Oliveira P, Ribeiro DA (2011) Effect of low-level laser therapy (660 nm) on the healing of second-degree skin burns in rats. J Cosmet Laser Ther 13:237–242PubMedCrossRefGoogle Scholar
  50. 50.
    Tuby H, Maltz L, Oron U (2006) Modulations of VEGF and iNOS in the rat heart by low level laser therapy are associated with cardioprotection and enhanced angiogenesis. Lasers Surg Med 38:682–688PubMedCrossRefGoogle Scholar
  51. 51.
    Dias FJ, Issa JP, Barbosa AP, de Vasconcelos PB, Watanabe IS, Mizusakiiyomasa M (2012) Effects of low-level laser irradiation in ultrastructural morphology, and immunoexpression of VEGF and VEGFR-2 of rat masseter muscle. Micron 43:237–244PubMedCrossRefGoogle Scholar
  52. 52.
    Shibuya M (2006) Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis 9:225–230, discussion 231PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2012

Authors and Affiliations

  • Mamie Mizusaki Iyomasa
    • 1
  • Elen Camargo Rizzi
    • 1
  • Juliane Caroline Leão
    • 1
  • João Paulo Mardegan Issa
    • 1
  • Fernando José Dias
    • 1
  • Yamba Carla Lara Pereira
    • 1
  • Maria José Vieira Fonseca
    • 2
  • Fabiana Testa Moura de Carvalho Vicentini
    • 2
  • Ii-sei Watanabe
    • 3
  1. 1.Department of Morphology, Stomatology and Physiology, Faculty of Dentistry of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  2. 2.Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  3. 3.Department of Anatomy, Institute of Biomedical Sciences—ICBUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations