Lasers in Medical Science

, Volume 28, Issue 3, pp 833–844 | Cite as

Numerical simulation of endovenous laser treatment of the incompetent great saphenous vein with external air cooling

  • Mohamad Feras Marqa
  • Serge Mordon
  • Esteban Hernández-Osma
  • Mario Trelles
  • Nacim Betrouni
Original Article


Endovenous laser treatment (ELT) has been proposed as an alternative in the treatment of reflux of the great saphenous vein. Before the procedure, peri-saphenous subcutaneous tumescent saline solution infiltration is usually performed. However, diffusion of this tumescent fluid is rapidly observed and can potentially reduce the efficacy as a heat sink. External skin cooling with cold air was proposed as an alternative solution. The objective of this study is to compare endovenous laser treatment without and with air cooling by realistic numerical simulations. An optical–thermal damage model was formulated and implemented using finite element modeling. The general model simulated light distribution using the diffusion approximation of the transport theory, temperature rise using the bioheat equation, and laser-induced injury using the Arrhenius damage model. Parameters, used in clinical procedures, were considered: power, 15 W; pulse duration, 1 s; fiber pull back, 3-mm increments every second; cold air applied in continuous mode during ELT; and no tumescent anesthesia. Simulations were performed for vein locations at 5, 10, and 15 mm in depth, with and without air cooling. For a vein located at 15 mm in depth, no significant difference was observed with and without cooling. For a vein located at 10 mm in depth, surface temperature increase up to 45 °C is observed without cooling. For a vein located at 5 mm, without cooling, temperature increase leads to irreversible damage of dermis and epidermis. Conversely, with air cooling, surface temperature reaches a maximum of 38 °C in accordance with recordings performed on patients. ELT of the incompetent great saphenous vein with external air cooling system is a promising therapy technique. Use of cold air on the skin continuously flowing in the area of laser shot decreased significantly the heat extent and the thermal damage in the perivenous tissues and the skin.

Keywords Endovenous laser Saphenous vein Finite element method Air cooling 


Conflict of interest

The authors declare that no conflict of interest exists.


  1. 1.
    Min RJ, Khilnani N, Zimmet SE (2003) Endovenous laser treatment of saphenous vein reflux: long-term results. J Vasc Interv Radiol 14:991–996PubMedCrossRefGoogle Scholar
  2. 2.
    Boné Salat C (1999) Tratamiento endoluminal de las varices con laser de diodo: estudio preliminar. Rev Patol Vasc 5:35–46Google Scholar
  3. 3.
    Agus GB, Mancini S, Magi G (2006) The first 1000 cases of Italian Endovenous–laser Working Group (IEWG). Rationale, and long-term outcomes for the 1999–2003 period. Int Angiol 25:209–215PubMedGoogle Scholar
  4. 4.
    Mundy L, Merlin TL, Fitridge RA, Hiller JE (2005) Systematic review of endovenous laser treatment for varicose veins. Br J Surg 92:1189–1194PubMedCrossRefGoogle Scholar
  5. 5.
    Nootheti PK, Cadag KM, Goldman MP (2007) Review of intravascular approaches to the treatment of varicose veins. Dermatol Surg 33:1149–1157, discussion 57PubMedCrossRefGoogle Scholar
  6. 6.
    van den Bos R, Arends L, Kockaert M, Neumann M, Nijsten T (2009) Endovenous therapies of lower extremity varicosities: a meta-analysis. J Vasc Surg 49:230–239PubMedCrossRefGoogle Scholar
  7. 7.
    Chang CJ, Chua JJ (2002) Endovenous laser photocoagulation (EVLP) for varicose veins. Lasers Surg Med 31:257–262PubMedCrossRefGoogle Scholar
  8. 8.
    Goldman MP, Mauricio M, Rao J (2004) Intravascular 1320-nm laser closure of the great saphenous vein: a 6- to 12-month follow-up study. Dermatol Surg 30:1380–1385PubMedCrossRefGoogle Scholar
  9. 9.
    Min RJ, Zimmet SE, Isaacs MN, Forrestal MD (2001) Endovenous laser treatment of the incompetent greater saphenous vein. J Vasc Interv Radiol 12:1167–1171PubMedCrossRefGoogle Scholar
  10. 10.
    Oh CK, Jung DS, Jang HS, Kwon KS (2003) Endovenous laser surgery of the incompetent greater saphenous vein with a 980-nm diode laser. Dermatol Surg 29:1135–1140PubMedCrossRefGoogle Scholar
  11. 11.
    Proebstle TM, Lehr HA, Kargl A et al (2002) Endovenous treatment of the greater saphenous vein with a 940-nm diode laser: thrombotic occlusion after endoluminal thermal damage by laser-generated steam bubbles. J Vasc Surg 35:729–736PubMedCrossRefGoogle Scholar
  12. 12.
    Pannier F, Rabe E, Maurins U (2009) First results with a new 1470-nm diode laser for endovenous ablation of incompetent saphenous veins. Phlebology 24:26–30PubMedCrossRefGoogle Scholar
  13. 13.
    Soracco JE, Lopez D'Ambola JO (2009) New wavelength for the endovascular treatment of lower limb venous insufficiency. Int Angiol 28:281–288PubMedGoogle Scholar
  14. 14.
    Vuylsteke ME, Vandekerckhove PJ, De Bo T, Moons P, Mordon S (2010) Use of a new endovenous laser device: results of the 1,500 nm laser. Ann Vasc Surg 24(2):205–211PubMedCrossRefGoogle Scholar
  15. 15.
    Doganci S, Demirkilic U (2010) Comparison of 980 nm laser and bare-tip fibre with 1470 nm laser and radial fibre in the treatment of great saphenous vein varicosities: a prospective randomised clinical trial. Eur J Vasc Endovasc Surg 40:254–259PubMedCrossRefGoogle Scholar
  16. 16.
    Hernández-Osma E, Mordon SR, Vokurka J, Trelles MA (2012) A comparative study of the efficacy of endovenous laser treatment of the incompetent great saphenous with external air cooling and without tumescent anesthesia. J Vasc Surg (in press)Google Scholar
  17. 17.
    Memetoglu ME, Kurtcan S, Kalkan A, Ozel D (2010) Combination technique of tumescent anesthesia during endovenous laser therapy of saphenous vein insufficiency. Interact Cardiovasc Thorac Surg 11:774–777PubMedCrossRefGoogle Scholar
  18. 18.
    Glowacka K, Orzechowska-Juzwenko K, Bieniek A, Wiela-Hojenska A, Hurkacz M (2009) Optimization of lidocaine application in tumescent local anesthesia. Pharmacol Rep 61:641–653PubMedGoogle Scholar
  19. 19.
    Noel B (2010) Tumescent local anesthesia. Rev Med Suisse 6:875–878PubMedGoogle Scholar
  20. 20.
    Hernandez-Osma E, Panella-Agusti F, Buil C, Mordon S, Trelles M (2010) Reduccion del tiempo quirurgico y del complicaciones en el tratamiento endovascular con laser. Angiologia 62:146–149CrossRefGoogle Scholar
  21. 21.
    Raulin C, Greve B, Hammes S (2000) Cold air in laser therapy: first experiences with a new cooling system. Lasers Surg Med 27:404–410PubMedCrossRefGoogle Scholar
  22. 22.
    Proebstle TM, Gul D, Kargl A, Knop J (2003) Endovenous laser treatment of the lesser saphenous vein with a 940-nm diode laser: early results. Dermatol Surg 29:357–361PubMedCrossRefGoogle Scholar
  23. 23.
    Mordon SR, Wassmer B, Zemmouri J (2006) Mathematical modeling of endovenous laser treatment (ELT). Biomed Eng Online 5:26PubMedCrossRefGoogle Scholar
  24. 24.
    Mordon SR, Wassmer B, Zemmouri J (2007) Mathematical modeling of 980-nm and 1320-nm endovenous laser treatment. Lasers Surg Med 39:256–265PubMedCrossRefGoogle Scholar
  25. 25.
    Niemz M (1996) Laser–tissue interactions, fundamentals and applications. Springer, BerlinGoogle Scholar
  26. 26.
    Ashley JWM, van Gemert JC (1995) Optical–thermal response of laser-irradiated tissue. Plenum Press, New YorkGoogle Scholar
  27. 27.
    Mohammed Y, Verhey JF (2005) A finite element method model to simulate laser interstitial thermo therapy in anatomical inhomogeneous regions. Biomed Eng Online 4:2PubMedCrossRefGoogle Scholar
  28. 28.
    Firbank MAS, Schweiger M, Delpy DT (1996) An investigation of light transport through scattering bodies with non-scattering regions. Phys Med Biol 41:767–783PubMedCrossRefGoogle Scholar
  29. 29.
    Flock ST PM, Wilson BC, Wynman DR (1989) Monte Carlo modeling of light propagation in highly scattering tissues I: model predictions and comparison with diffusion theory. IEEE Trans Biomed Eng 36:1162–1168PubMedCrossRefGoogle Scholar
  30. 30.
    Hielscher AH, Wang LH, Chance B, Tittel FK, Jacques SL (1995) The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissue. Phys Med Biol 40:1975CrossRefGoogle Scholar
  31. 31.
    Madsen SJ, Wilson B, Patterson MS, Park YD, Jacques SL, Hefetz Y (1992) Experimental tests of simple diffusion model for the estimation of scattering and absorption-coefficients of turbid media from time-resolved diffuse reflectance measurements. Appl Opt 31:3509–3517PubMedCrossRefGoogle Scholar
  32. 32.
    Okada E, Schweiger M, Arridge SR, Firbank M, Delpy DT (1996) Experimental validation of Monte-Carlo and finite-element methods for the estimation of the optical path-length in inhomogeneous tissues. Appl Opt 35:3362–3371PubMedCrossRefGoogle Scholar
  33. 33.
    Star WM (1989) Comparing the P3-approximation with diffusion theory and with Monte Carlo calculations of light propagation in a slab geometry SPIE Institute Series 5. In: Dosimetry of laser radiation in medicine and biology. SPIE Press, Bellingham, pp 146–154Google Scholar
  34. 34.
    Yoo KM, Liu F, Alfano RR (1990) When does the diffusion approximation fail to describe photon transport in random media? Phys Rev Lett 64:2647PubMedCrossRefGoogle Scholar
  35. 35.
    Chance BAR (1995) Optical tomography, photon migration, and spectroscopy of tissue and model media: theory, human studies, and instrumentation, vol 2389. SPIE, Bellingham, Proceedings volume parts 1 and 2CrossRefGoogle Scholar
  36. 36.
    Vuylsteke M, Van Dorpe J, Roelens J, De Be T, Mordon S (2009) Endovenous laser treatment: a morphological study in an animal model. Phlebology 24:166–175PubMedCrossRefGoogle Scholar
  37. 37.
    Chang IA (2004) aNU. Thermal modeling of lesion growth with radiofrequency ablation devices. Biomed Eng Online 3:24CrossRefGoogle Scholar
  38. 38.
    Saad YSM (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869CrossRefGoogle Scholar
  39. 39.
    Marqa MF, Colin P, Nevoux P, Mordon SR, Betrouni N (2011) Focal laser ablation of prostate cancer: numerical simulation of temperature and damage distribution. Biomed Eng Online 10:45PubMedCrossRefGoogle Scholar
  40. 40.
    Incropera FPDD (1996) Fundamentals of heat and mass transfer. Wiley, New YorkGoogle Scholar
  41. 41.
    Mordon SR, Wassmer B, Reynaud JP, Zemmouri J (2008) Mathematical modeling of laser lipolysis. Biomed Eng Online 7:10PubMedCrossRefGoogle Scholar
  42. 42.
    van den Bos RR, Kockaert MA, Martino Neumann HA, Bremmer RH, Nijsten T, van Gemert MJ (2009) Heat conduction from the exceedingly hot fiber tip contributes to the endovenous laser ablation of varicose veins. Lasers Med Sci 24:247–251PubMedCrossRefGoogle Scholar
  43. 43.
    Chang CW, Reinisch L, Biesman BS (2003) Analysis of epidermal protection using cold air versus chilled sapphire window with water or gel during 810 nm diode laser application. Lasers Surg Med 32:129–136PubMedCrossRefGoogle Scholar
  44. 44.
    Greve B, Hammes S, Raulin C (2001) The effect of cold air cooling on 585 nm pulsed dye laser treatment of port-wine stains. Dermatol Surg 27:633–636PubMedCrossRefGoogle Scholar
  45. 45.
    Hammes S, Raulin C (2005) Evaluation of different temperatures in cold air cooling with pulsed-dye laser treatment of facial telangiectasia. Lasers Surgery Med 36:136–140CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2012

Authors and Affiliations

  • Mohamad Feras Marqa
    • 1
  • Serge Mordon
    • 1
  • Esteban Hernández-Osma
    • 2
  • Mario Trelles
    • 2
  • Nacim Betrouni
    • 1
  1. 1.INSERM-U703, Université Lille Nord de France, Lille University HospitalLilleFrance
  2. 2.Instituto Médico Vilafortuny, Fundación Antoni de GimbernatTarragonaSpain

Personalised recommendations