Lasers in Medical Science

, Volume 28, Issue 2, pp 551–564 | Cite as

Suppressive effect of low-level laser therapy on tracheal hyperresponsiveness and lung inflammation in rat subjected to intestinal ischemia and reperfusion

  • Flávia Mafra de Lima
  • Luana Vitoretti
  • Fernando Coelho
  • Regiane Albertini
  • Ana Cristina Breithaupt-Faloppa
  • Wothan Tavares de Lima
  • Flávio AimbireEmail author
Original Article


Intestinal ischemia and reperfusion (i-I/R) is an insult associated with acute respiratory distress syndrome (ARDS). It is not known if pro- and anti-inflammatory mediators in ARDS induced by i-I/R can be controlled by low-level laser therapy (LLLT). This study was designed to evaluate the effect of LLLT on tracheal cholinergic reactivity dysfunction and the release of inflammatory mediators from the lung after i-I/R. Anesthetized rats were subjected to superior mesenteric artery occlusion (45 min) and killed after clamp release and preestablished periods of intestinal reperfusion (30 min, 2 or 4 h). The LLLT (660 nm, 7.5 J/cm2) was carried out by irradiating the rats on the skin over the right upper bronchus for 15 and 30 min after initiating reperfusion and then euthanizing them 30 min, 2, or 4 h later. Lung edema was measured by the Evans blue extravasation technique, and pulmonary neutrophils were determined by myeloperoxidase (MPO) activity. Pulmonary tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), intercellular adhesion molecule-1 (ICAM-1), and isoform of NO synthase (iNOS) mRNA expression were analyzed by real-time PCR. TNF-α, IL-10, and iNOS proteins in the lung were measured by the enzyme-linked immunoassay technique. LLLT (660 nm, 7.5 J/cm2) restored the tracheal hyperresponsiveness and hyporesponsiveness in all the periods after intestinal reperfusion. Although LLLT reduced edema and MPO activity, it did not do so in all the postreperfusion periods. It was also observed with the ICAM-1 expression. In addition to reducing both TNF-α and iNOS, LLLT increased IL-10 in the lungs of animals subjected to i-I/R. The results indicate that LLLT can control the lung's inflammatory response and the airway reactivity dysfunction by simultaneously reducing both TNF-α and iNOS.


Gut ischemia Acute lung inflammation Airway smooth muscle Adhesion molecule Cytokines Phototherapy 



The authors acknowledge the financial support of FAPESP (São Paulo State Research Foundation) through Grants 2008/08048-4 and 2008/08838-5.


  1. 1.
    Ito K, Osaka H, Kojima N, Miura M (2003) Pharmacological preconditioning protects lung injury induced by intestinal ischemia/reperfusion in rat. Shock 19:462–468PubMedCrossRefGoogle Scholar
  2. 2.
    Van Soeren M, Diehl-Jones W, Maykut R, Haddara W (2000) Pathophysiology and implications for treatment of acute respiratory distress syndrome. AACN Clin Issues 11:179–197PubMedCrossRefGoogle Scholar
  3. 3.
    Tsushima K, King L, Aggarwal N, De Gorordo A, D’Alessio F, Kubo K (2009) Acute lung injury. Inter Med 48:621–630CrossRefGoogle Scholar
  4. 4.
    Carden D, Granger D (2000) Pathophysiology of ischaemia-reperfusion injury. J Pathol 190:255–266PubMedCrossRefGoogle Scholar
  5. 5.
    Van der Poll T, Lowry S (1995) Tumor necrosis factor in sepsis: mediator of multiple organ failure or essential part of host defense? Shock 3:1–12PubMedGoogle Scholar
  6. 6.
    Koksoy C, Kuzu M, Kuzu I, Ergun H, Gurhan I (2001) Role of tumour necrosis factor in lung injury caused by intestinal ischaemia-reperfusion. Br J Surg 88:464–468PubMedCrossRefGoogle Scholar
  7. 7.
    Yamamoto S, Tanabe M, Wakabayashi G, Shimazu M, Matsumoto K, Kitajima M (2001) The role of tumor necrosis factor-α and interleukin-1β in ischemia/reperfusion injury of the rat small intestine. J Surg Res 99:134–141PubMedCrossRefGoogle Scholar
  8. 8.
    Oliveira-Junior I, Pinheiro B, Silva I, Salomão R, Zollner R, Beppu O (2003) Pentoxifylline decreases tumor necrosis factor and interleukin-1 during high tidal volume. Braz J Med Bio Res 36:1349–1357CrossRefGoogle Scholar
  9. 9.
    Souza D, Teixeira M (2005) The balance between the production of tumor necrosis factor-alpha and interleukin-10 determines tissue injury and lethality during intestinal ischemia and reperfusion. Mem Inst Oswaldo Cruz 100(Sup 1):59–66PubMedCrossRefGoogle Scholar
  10. 10.
    Cavriani G, Oliveira-Filho R, Trezena A, da Silva Z, Domingos H, de Arruda M, Jancar S, Tavares de Lima W (2004) Lung microvascular permeability and neutrophil recruitment are differently regulated by nitric oxide in a rat model of intestinal ischemia-reperfusion. Eur J Pharmacol 494:241–249PubMedCrossRefGoogle Scholar
  11. 11.
    Cuzzocrea S, Chatterjee P, Mazzon E, Dugo L, De Sarro L, Van de Loo A, Fons A, Caputi A, Thiemermann C (2002) Role of induced nitric oxide in the initiation of the inflammatory response after post ischemic injury. Shock 18:169–176PubMedCrossRefGoogle Scholar
  12. 12.
    Ke-seng Z, Huang X, Liu J, Huang Q, Jin C, Jiang J, Yong Z, Guiling Z (2002) New approach to treatment of shock—restitution of vasoreactivity. Shock 18:189–192CrossRefGoogle Scholar
  13. 13.
    Ricciardolo F, Di Stefano A, Sabatini F, Folkerts G (2006) Reactive nitrogen species in the respiratory tract. Eur J Pharmacol 533:240–252PubMedCrossRefGoogle Scholar
  14. 14.
    Tsushima K, King L, Aggarwal N, De Gorordo A, D’Alessio A, Kubo K (2009) Acute lung injury. Inter Med 48:621–630CrossRefGoogle Scholar
  15. 15.
    Cazzola M, Polosa R (2006) Anti-TNF-alpha and Th1 cytokine-directed therapies for the treatment of asthma. Curr Opin Allergy Clin Immunol 6:43–50PubMedCrossRefGoogle Scholar
  16. 16.
    Bjordal J, Johnson M, Iversen V, Aimbire F, Lopes-Martins R (2006) Photoradiation in acute pain: a systemic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed Laser Surg 24:158–168PubMedCrossRefGoogle Scholar
  17. 17.
    Chow R, Johnson M, Lopes-Martins R, Bjordal J (2009) Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 374:1897–908PubMedCrossRefGoogle Scholar
  18. 18.
    Ostronosova N (2006) Outpatient use of laser therapy in bronchial asthma. Ter Arkh 78:41–44PubMedGoogle Scholar
  19. 19.
    Nikitin A, Esaulenko I, Shatalova O (2008) Effectiveness of laser puncture in elderly patients with bronchial asthma accompanied by chronic rhinosinusitis. Adv Gerontol 21:424–426PubMedGoogle Scholar
  20. 20.
    Henson P, Zanolari B, Schwartzman N, Hong S (1978) Intracellular control of human neutrophil secretion. I. C5a-induced stimulus-specific desensitization and the effects of cytochalasin. J Immunol 121:851–855PubMedGoogle Scholar
  21. 21.
    Cayla C, Merino V, Cabrini D, Silva A Jr, Pesquero P, Bader M (2002) Structure of the mammalian kinin receptor gene locus. Int Immunopharmacol 2:1721–1727PubMedCrossRefGoogle Scholar
  22. 22.
    Coelho F, Cavriani G, Soares A, Teixeira A, Almeida P, Sudo-Hayashi L, Muscará M, Oliveira-Filho R, Vargaftig B, Tavares de Lima W (2007) Lymphatic-borne IL-1β and the inducible isoform of nitric oxide synthase trigger the bronchial hyporresponsiveness after intestinal ischemia/reperfusion in rats. Shock 28:694–699PubMedGoogle Scholar
  23. 23.
    Ameredes B, Zamora R, Sethi J, Liu H, Kohut L, Gligonic A, Choi A, Calhoun W (2005) Alterations in nitric oxide and cytokine production with airway inflammation in the absence of IL-10. J Immunol 175:1206–1213PubMedGoogle Scholar
  24. 24.
    Guiqi G (2011) Pre-treatment with glutamine attenuates lung injury in rats subjected to intestinal ischaemia–reperfusion. Injury 41:72–77CrossRefGoogle Scholar
  25. 25.
    Tian X, Yao J, Zhang X, Feng B, Yang C, Zheng S (2006) Effect of nuclear factor kappa B on intercellular adhesion molecule-1 expression and neutrophil infiltration in lung injury induced by intestinal ischemia/reperfusion in rats. World J Gastroenterol 12:388–392PubMedGoogle Scholar
  26. 26.
    Souza D, Lomez E, Pinho V, Pesquero J, Bader M, Pesquero M, Teixeira M (2004) Role of bradykinin B2 and B1 receptors in the local, remote, and systemic inflammatory responses that follow intestinal ischemia and reperfusion injury. J Immunol 172:2542–2548PubMedGoogle Scholar
  27. 27.
    Cavriani G, Domingos H, Soares A, Trezena A, Ligeiro-Oliveira A, Oliveira-Filho R, Sudo-Hayashi L, Tavares de Lima W (2005) Lymphatic system as a path underlying the spread of ischemia/reperfusion in rats. Shock 23:330–336PubMedCrossRefGoogle Scholar
  28. 28.
    Aimbire F, Bjordal J, Iversen V, Albertini R, Frigo L, Pacheco M, Castro-Faria-Neto H, Chavantes M, Labat R, Lopes-Martins R (2006) Low-level laser therapy partially restores trachea muscle relaxation response in rats with tumor necrosis factor alpha-mediated smooth airway muscle dysfunction. Lasers Surg Med 38:773–778PubMedCrossRefGoogle Scholar
  29. 29.
    Mafra de Lima F, Costa M, Albertini R, Silva J Jr, Aimbire F (2009) Low level laser therapy (LLLT): attenuation of cholinergic hyperreactivity, β2-adrenergic hyporesponsiveness and TNF-α mRNA expression in rat bronchi segments in E. coli lipopolysaccharide-induced airway inflammation by a NF-κB dependent mechanism. Lasers Surg Med 41:68–74PubMedCrossRefGoogle Scholar
  30. 30.
    Aimbire F, de Lima F, Costa M, Albertini R, Correa J, Iversen V, Bjordal J (2009) Effect of low level laser therapy on bronchial hyper-responsiveness. Lasers Med Sci 24:557–576CrossRefGoogle Scholar
  31. 31.
    Aimbire F, Lopes-Martins R, Albertini R, Pacheco M, Castro-Faria-Neto H, Martins P, Bjordal J (2007) Effect of low-level laser therapy on hemorrhagic lesions induced by immune complex in rat lungs. Photomed Laser Surg 25:112–117PubMedCrossRefGoogle Scholar
  32. 32.
    Aimbire F, Albertini R, Pacheco M, Castro-Faria-Neto H, Leonardo P, Iversen V, Lopes-Martins R, Bjordal J (2006) Low-level laser therapy induces dose-dependent reduction of TNFalpha levels in acute inflammation. Photomed Laser Surg 24:33–37PubMedCrossRefGoogle Scholar
  33. 33.
    Aimbire F, Ligeiro de Oliveira A, Albertini R, Corrêa J, Ladeira de Campos C, Lyon J, Silva J Jr, Costa M (2008) Low level laser therapy (LLLT) decreases pulmonary microvascular leakage, neutrophil influx and IL-1β levels in airway and lung from rat subjected to LPS-induced inflammation. Inflammation 31:189–197PubMedCrossRefGoogle Scholar
  34. 34.
    Aimbire F, Santos F, Albertini R, Castro-Faria-Neto H, Mittmann J, Pacheco-Soares C (2008) Low-level laser therapy decreases levels of lung neutrophils anti-apoptotic factors by a NF-kappaB dependent mechanism. Int Immunopharmacol 8:603–605PubMedCrossRefGoogle Scholar
  35. 35.
    Mafra de Lima F, Naves K, Machado A, Albertini R, Villaverde A, Aimbire F (2009) Lung inflammation and endothelial cell damage are decreased after treatment with laser therapy (PhT) in a model of acute lung injury induced by Escherichia coli lipopolysaccharide in the rat. Cell Biol Int 33:1212–1221PubMedCrossRefGoogle Scholar
  36. 36.
    Frangogiannis N, Smith C, Entman M (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53:31–47PubMedCrossRefGoogle Scholar
  37. 37.
    Souza D, Fagundes F, Amaral F, Cisalpino D, Sousa L, Vieira A, Pinho V, Nicoli J, Vieira L, Fierro I, Teixeira M (2007) The required role of endogenously produced lipoxin A4 and annexin-1 for the production of IL-10 and inflammatory hyporesponsiveness in mice. J Immunol 179:8533–8543PubMedGoogle Scholar
  38. 38.
    de Lima F, Villaverde A, Albertini R, Corrêa J, Carvalho R, Munin E, Araújo T, Silva J Jr, Aimbire F (2011) Dual effect of low-level laser therapy (LLLT) on the acute lung inflammation induced by intestinal ischemia and reperfusion: action on anti- and pro-inflammatory cytokines. Lasers Surg Med 43:410–420PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2012

Authors and Affiliations

  • Flávia Mafra de Lima
    • 1
  • Luana Vitoretti
    • 2
  • Fernando Coelho
    • 3
  • Regiane Albertini
    • 1
  • Ana Cristina Breithaupt-Faloppa
    • 4
  • Wothan Tavares de Lima
    • 2
  • Flávio Aimbire
    • 5
    Email author
  1. 1.Department of Rehabilitation SciencesUniversidade Nove de Julho, UNINOVESão PauloBrazil
  2. 2.Laboratório de Fisiopatologia Experimental, Departamento de FarmacologiaUniversidade de São Paulo – USPSão PauloBrazil
  3. 3.Laboratório de Radicais Livres, Departamento de BioquímicaInstituto de QuímicaSão PauloBrazil
  4. 4.Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Hospital das Clínicas - FMUSPSão PauloBrazil
  5. 5.Department of Science and TechnologyFederal University of São Paulo, UNIFESPSão José dos CamposBrazil

Personalised recommendations