Lasers in Medical Science

, Volume 28, Issue 2, pp 451–456 | Cite as

Infrared low-level diode laser on serum chemokine MCP-1 modulation in mice

  • Thiago Y. Fukuda
  • Maury M. Tanji
  • Julio Fernandes de Jesus
  • Suélen Rocha da Silva
  • Maria N. Sato
  • Hélio Plapler
Original Article


The effect of the low-level laser therapy (LLLT) in the modulation of cells related to inflammatory processes has been widely studied, with different parameters. The objective was to investigate the immediate and cumulative effect of infrared LLLT on chemokine monocyte chemotactic protein-1 (MCP-1) modulation in mice. Fifty-two isogenic mice were distributed in seven groups: control (n = 10, no surgical procedure), laser I (n = 7, surgical procedure and a single LLLT exposure 12 h after the surgery), laser II (n = 7, surgery followed by two LLLT exposures, 12 and 36 h after surgery), and laser III (n = 7, surgery followed by three LLLT exposures, 12, 36, and 60 h after surgery). For each group, a sham group (n = 21) underwent surgery without laser application. The animals in the laser groups received an infrared diode continuous laser exposure (AsGaAl, 780 nm wavelength, power of 20 mW, energy density of 10 J/cm2, spot size of 0,04 cm2) on three points (20 s per point), and a final energy of 0.4 J. The animals were sacrificed 36 h (laser I and sham I groups), 60 h (laser II and sham II), and 84 h (laser III and sham III groups) after surgery. The MCP-1 concentrations were measured by cytometric bead array. There was no significant difference between the three periods in the sham group (p = 0.3). There was a lower concentration of MCP-1 in the laser III group compared to the laser I group (p = 0.05). The infrared LLLT showed a cumulative effect in the modulation of chemokine MCP-1 concentration. Three LLLT exposures were necessary to achieve the MCP-1 modulation.


Chemokines Inflammation Monocyte chemotactic protein-1 Low-level laser therapy 


  1. 1.
    Fukuda TY, Jesus JF, Santos MG, Cazarini Júnior C, Tanji MM, Plapler H (2010) Aferição dos equipamentos de laser de baixa intensidade [Calibration of low-level laser therapy equipment]. Rev Bras Fisioter 14:303–308PubMedCrossRefGoogle Scholar
  2. 2.
    Aimbire F, Albertini R, Pacheco MT et al (2006) Low-level laser therapy induces dose-dependent reduction of TNFalpha levels in acute inflammation. Photomed Laser Surg 24(1):33–37PubMedCrossRefGoogle Scholar
  3. 3.
    Kitchen SS, Partridge CJ (1991) A review of low level laser therapy: Part I: background, physiological effects and hazards. Physiotherapy 77:161–168. Available from: Accessed 20 Jun 2011Google Scholar
  4. 4.
    Moshkovska T, Mayberry J (2005) It is time to test low level laser therapy in Great Britain. Postgrad Med J 81(957):436–441PubMedCrossRefGoogle Scholar
  5. 5.
    Pinheiro AL, Gerbi ME (2006) Photoengineering of bone repair processes. Photomed Laser Surg 24(2):169–178PubMedCrossRefGoogle Scholar
  6. 6.
    Enwemeka CS, Parker JC, Dowdy DS, Harkness EE, Sanford LE, Woodruff LD (2004) The efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study. Photomed Laser Surg 22(4):323–329PubMedCrossRefGoogle Scholar
  7. 7.
    Bjordal JM, Johnson MI, Iversen V, Aimbire F, Lopes-Martins RA (2006) Photoradiation in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed Laser Surg 24:158–168PubMedCrossRefGoogle Scholar
  8. 8.
    Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435PubMedCrossRefGoogle Scholar
  9. 9.
    Safavi SM, Kazemi B, Esmaeili M, Fallah A, Modarresi A, Mir M (2008) Effects of low-level He-Ne laser irradiation on the gene expression of IL-1beta, TNF-alpha, IFN-gamma, TGF-beta, bFGF, and PDGF in rat’s gingival. Lasers Med Sci 23(3):331–335PubMedCrossRefGoogle Scholar
  10. 10.
    Yamaura M, Yao M, Yaroslavsky I, Cohen R, Smotrich M, Kochevar IE (2009) Low level light effects on inflammatory cytokine production by rheumatoid arthritis synoviocytes. Lasers Surg Med 41(4):282–290PubMedCrossRefGoogle Scholar
  11. 11.
    Schnabel RB, Baumert J, Barbalic M et al (2010) Duffy antigen receptor for chemokines (Darc) polymorphism regulates circulating concentrations of monocyte chemoattractant protein-1 and other inflammatory mediators. Blood 115(26):5289–5299PubMedCrossRefGoogle Scholar
  12. 12.
    Lee YH, Woo JH, Choi SJ, Ji JD, Song GG (2010) Functional monocyte chemoattractant protein-1 promoter -2518 polymorphism and systemic lupus erythematosus: a meta-analysis. Mol Biol Rep 37(7):3421–3426PubMedCrossRefGoogle Scholar
  13. 13.
    Bossink AW, Paemen L, Jansen PM, Hack CE, Thijs LG, Van Damme J (1995) Plasma levels of the chemokines monocyte chemotactic proteins-1 and -2 are elevated in human sepsis. Blood 86(10):3841–3847PubMedGoogle Scholar
  14. 14.
    Ohta M, Kitadai Y, Tanaka S et al (2003) Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human gastric carcinomas. Int J Oncol 22(4):773–778PubMedGoogle Scholar
  15. 15.
    Tucci M, Barnes EV, Sobel ES et al (2004) Strong association of a functional polymorphism in the monocyte chemoattractant protein 1 promoter gene with lupus nephritis. Arthritis Rheum 50(6):1842–1849PubMedCrossRefGoogle Scholar
  16. 16.
    Gavish L, Perez LS, Reissman P, Gertz SD (2008) Irradiation with 780 nm diode laser attenuates inflammatory cytokines but upregulates nitric oxide in lipopolysaccharide-stimulated macrophages: implications for the prevention of aneurysm progression. Lasers Surg Med 40(5):371–378PubMedCrossRefGoogle Scholar
  17. 17.
    Boschi ES, Leite CE, Saciura VC et al (2008) Anti-inflammatory effects of low-level laser therapy (660 nm) in the early phase in carrageenan-induced pleurisy in rat. Lasers Surg Med 40(7):500–508PubMedCrossRefGoogle Scholar
  18. 18.
    Damy SB, Camargo RS, Chammas R, Figueiredo LFP (2010) Aspectos fundamentais da experimentação animal—aplicações em cirurgia experimental [Fundamental aspects on animal research as applied to experimental surgery]. Rev Assoc Med Bras 56(1):103–111PubMedCrossRefGoogle Scholar
  19. 19.
    Prado RP, Liebano RE, Hochman B, Pinfildi CE, Ferreira LM (2006) Experimental model for low level laser therapy on ischemic random skin flap in rats. Acta Cirug Bras 21(4):258–262CrossRefGoogle Scholar
  20. 20.
    Fukuda TY, Tanji MM, Jesus JF, Sato MN, Duarte AJ, Plapler H (2010) Single session to infrared low level diode laser on TNF-alpha and IL-6 cytokines release by mononuclear spleen cells in mice: a pilot study. Lasers Surg Med 42(6):584–588PubMedCrossRefGoogle Scholar
  21. 21.
    Harigai M, Hara M, Yoshimura T, Leonard EJ, Inoue K, Kashiwazaki S (1993) Monocyte chemoattractant protein-1 (MCP-1) in inflammatory joint diseases and its involvement in the cytokine network of rheumatoid synovium. Clin Immunol Immunopathol 69(1):83–91PubMedCrossRefGoogle Scholar
  22. 22.
    Harsimran K, Singh AA, Guruvinder S, Sharda S, Vasudha S (2009) Plasma monocyte chemoattractant protein-1 as risk marker in type 2 diabetes mellitus and coronary artery disease in North Indians. Diab Vasc Dis Res 6(4):288–290PubMedCrossRefGoogle Scholar
  23. 23.
    Suga M, Iyonaga K, Ichiyasu H, Saita N, Yamasaki H, Ando M (1999) Clinical significance of MCP-1 levels in BALF and serum in patients with intersticial lung diseases. Eur Respir J 14(2):376–382PubMedCrossRefGoogle Scholar
  24. 24.
    Yuan XP, He XS, Wang CX, Liu LS, Fu Q (2011) Triptolide attenuates renal interstitial fibrosis in rats with unilateral ureteral obstruction. Nephrology (Carlton) 16(2):200–210CrossRefGoogle Scholar
  25. 25.
    Ukena SN, Westendorf AM, Hansen W et al (2005) The host response to the probiotic Escherichia coli strain Nissle 1917: specific up-regulation of the proinflammatory chemokine MCP-1. BMC Med Genet 6:43PubMedCrossRefGoogle Scholar
  26. 26.
    Pretel H, Lizarelli RF, Ramalho LT (2007) Effect of low-level laser therapy on bone repair: histological study in rats. Lasers Surg Med 39(10):788–796PubMedCrossRefGoogle Scholar
  27. 27.
    Moreira MS, Velasco IT, Ferreira LS et al (2009) Effect of phototherapy with low intensity laser on local and systemic immunomodulation following focal brain damage in rat. J Photochem Photobiol B 97(3):145–151PubMedCrossRefGoogle Scholar
  28. 28.
    Silva TC, Oliveira TM, Sakai VT et al (2010) In vivo effects on the expression of vascular endothelial growth factor-A165 messenger ribonucleic acid of an infrared diode laser associated or not with a visible red diode laser. Photomed Laser Surg 28(1):63–68PubMedCrossRefGoogle Scholar
  29. 29.
    Carvalho CM, de Lacerda JA, dos Santos Neto FP, Cangussu MC, Marques AM, Pinheiro AL (2010) Wavelength effect in temporomandibular joint pain: a clinical experience. Lasers Med Sci 25(2):229–232PubMedCrossRefGoogle Scholar
  30. 30.
    Turhani D, Scheriau M, Kapral D, Benesch T, Jonke E, Bantleon HP (2006) Pain relief by single low-level laser irradiation in orthodontic patients undergoing fixed appliance therapy. Am J Orthod Dentofac Orthop 130(3):371–377CrossRefGoogle Scholar
  31. 31.
    Sussai DA, Carvalho PT, Dourado DM, Belchior AC, dos Reis FA, Pereira DM (2010) Low-level laser therapy attenuates creatine kinase levels and apoptosis during forced swimming in rats. Lasers Med Sci 25(1):115–120PubMedCrossRefGoogle Scholar
  32. 32.
    Fung DT, Ng GY, Leung MC, Tay DK (2003) Effects of a therapeutic laser on the ultrastructural morphology of repairing medial collateral ligament in a rat model. Lasers Surg Med 32(4):286–293PubMedCrossRefGoogle Scholar
  33. 33.
    Doin-Silva R, Baranauskas V, Rodrigues-Simioni L, da Cruz-Höfling MA (2009) The ability of low level laser therapy to prevent muscle tissue damage induced by snake venom. Photochem Photobiol 85(1):63–69PubMedCrossRefGoogle Scholar
  34. 34.
    Ng GY, Fung DT, Leung MC, Guo X (2004) Comparison of single and multiple applications of GaAlAs laser on rat medial collateral ligament repair. Lasers Surg Med 34(3):285–289PubMedCrossRefGoogle Scholar
  35. 35.
    Ng GY, Fung DT, Leung MC, Guo X (2004) Ultrastructural comparison of medial collateral ligament repair after single or multiple applications of GaAlAs laser in rats. Lasers Surg Med 35(4):317–323PubMedCrossRefGoogle Scholar
  36. 36.
    Prabhu V, Rao SB, Rao NB, Aithal KB, Kumar P, Mahato KK (2010) Development and evaluation of fiber optic probe-based helium-neon low-level laser therapy system for tissue regeneration—an in vivo experimental study. Photochem Photobiol 86(6):1364–1372PubMedCrossRefGoogle Scholar
  37. 37.
    Oliveira FS, Pinfildi CE, Parizoto NA et al (2009) Effect of low level laser therapy (830 nm) with different therapy regimes on the process of tissue repair in partial lesion calcaneuous tendon. Lasers Surg Med 41(4):271–276PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2012

Authors and Affiliations

  • Thiago Y. Fukuda
    • 1
  • Maury M. Tanji
    • 2
    • 3
  • Julio Fernandes de Jesus
    • 1
  • Suélen Rocha da Silva
    • 2
    • 3
  • Maria N. Sato
    • 2
  • Hélio Plapler
    • 1
  1. 1.Experimental SurgeryFederal University of São Paulo (UNIFESP)São PauloBrazil
  2. 2.Laboratory of Medical Investigation in Dermatology and Immunodeficiencies–LIM-56, FMUSPSão PauloBrazil
  3. 3.Universidade do Grande ABCSão PauloBrazil

Personalised recommendations