Lasers in Medical Science

, Volume 27, Issue 6, pp 1205–1212 | Cite as

Photodynamic inactivation of biofilms formed by Candida spp., Trichosporon mucoides, and Kodamaea ohmeri by cationic nanoemulsion of zinc 2,9,16,23-tetrakis(phenylthio)-29H, 31H-phthalocyanine (ZnPc)

  • J. C. Junqueira
  • A. O. C. Jorge
  • J. O. Barbosa
  • R. D. Rossoni
  • S. F. G. Vilela
  • A. C. B. P. Costa
  • F. L. Primo
  • J. M. Gonçalves
  • A. C. Tedesco
  • J. M. A. H. Suleiman
Original Article

Abstract

The biofilms formed by opportunistic yeasts serve as a persistent reservoir of infection and impair the treatment of fungal diseases. The aim of this study was to evaluate photodynamic inactivation (PDI) of biofilms formed by Candida spp. and the emerging pathogens Trichosporon mucoides and Kodamaea ohmeri by a cationic nanoemulsion of zinc 2,9,16,23-tetrakis(phenylthio)-29H,31H-phthalocyanine (ZnPc). Biofilms formed by yeasts after 48 h in the bottom of 96-well microtiter plates were treated with the photosensitizer (ZnPc) and a GaAlAs laser (26.3 J cm–2). The biofilm cells were scraped off the well wall, homogenized, and seeded onto Sabouraud dextrose agar plates that were then incubated at 37°C for 48 h. Efficient PDI of biofilms was verified by counting colony-forming units (CFU/ml), and the data were submitted to analysis of variance and the Tukey test (p < 0.05). All biofilms studied were susceptible to PDI with statistically significant differences. The strains of Candida genus were more resistant to PDI than emerging pathogens T. mucoides and K. ohmeri. A mean reduction of 0.45 log was achieved for Candida spp. biofilms, and a reduction of 0.85 and 0.84, were achieved for biofilms formed by T. mucoides and K. ohmeri, respectively. Therefore, PDI by treatment with nanostructured formulations cationic zinc 2,9,16,23- tetrakis (phenylthio)- 29H, 31H- phthalocyanine (ZnPc) and a laser reduced the number of cells in the biofilms formed by strains of C. albicans and non-Candida albicans as well the emerging pathogens T. mucoides and K. ohmeri.

Keywords

Biofilm Candida spp. Trichosporon mucoides Kodamaea ohmeri Photodynamic inactivation Zinc phthalocyanine 

Notes

Acknowledgements

This study was supported by the São Paulo Council of Research - FAPESP, Brazil (Grant 09/52283-0), post-doc FAPESP project 2009/15363-6 (F.L.P.) and Univ Estadual Paulista - PROPE/UNESP.

References

  1. 1.
    Pomarico L, Cerqueira DF, Soares RMA, Souza IPR, Castro GFBA, Socransky S, Haffajee A, Teles RP (2009) Associations among the use of highly active antiretroviral therapy, oral candidiasis, oral Candida species and salivary immunoglobulin A in HIV-infected children. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:203–210. doi: 10.1016/j.tripleo.2009.05.008 PubMedCrossRefGoogle Scholar
  2. 2.
    Schelenz S, Abdallah S, Gray G, Stubbings H, Gow I, Baker P, Hunter PR (2011) Epidemiology of oral yeast colonization and infection in patients with hematological malignancies, head neck and solid tumors. J Oral Pathol Med 40:83–89. doi: 10.1111/j.1600-0714.2010.00937.x PubMedCrossRefGoogle Scholar
  3. 3.
    Williams DW, Kuriyama T, Silva S, Malic S (2000) Lewis MAO (2011) Candida biofilms and oral candidosis: treatment and prevention. Periodontol 55:250–265. doi: 10.1111/j.1600-0757.2009.00338.x CrossRefGoogle Scholar
  4. 4.
    Miceli MH, Díaz JA, Lee AS (2011) Emerging opportunistic yeast infections. Lancet Infect Dis 11:142–151PubMedCrossRefGoogle Scholar
  5. 5.
    Hawkins JL, Baddour LM (2003) Candida lusitaniae: infections in the era of fluconazole availability. Clin Infect Dis 36:e14–e18PubMedCrossRefGoogle Scholar
  6. 6.
    Paugam A, Baixench MT, Viguié C (2008) An update on Candida dubliniensis. Med Mal Infect 38:1–7. doi: 10.1016/j.medmal.2007.10.008 PubMedCrossRefGoogle Scholar
  7. 7.
    Seneviratne CJ, Jin L, Samaranayake LP (2008) Biofilm lifestyle of Candida: a mini review. Oral Dis 14:582–590. doi: 10.1111/j.1601-0825.2007.01424.x PubMedCrossRefGoogle Scholar
  8. 8.
    Uppuluri P, Pierce CG, López-Ribot JL (2009) Candida albicans biofilm formation and its clinical consequences. Future Microbiol l4:1235–1237CrossRefGoogle Scholar
  9. 9.
    Ramage G, Mowat E, Jones B, Willians C, Lopez-Ribot J (2009) Our current understanding of fungal biofilms. Crit Rev Microbiol 35:340–355. doi: 10.3109/10408410903241436 PubMedCrossRefGoogle Scholar
  10. 10.
    Paphitou NI, Ostrosky-Zeichner L, Paetznick VL, Rodriguez JR, Chen E, Rex JH (2002) In vitro antifungal susceptibility of Trichosporon species. Antimicrob Agents Chemother 46:1144–1146. doi: 10.1128/AAC.46.4.1144-1146.2002 PubMedCrossRefGoogle Scholar
  11. 11.
    Lacasse A, Cleveland KO (2009) Trichosporon mucoides fungemia in a liver transplant recipient: case report and review. Transpl Infect Dis 11:155–159. doi: 10.1111/j.1399-3062.2008.00355.x PubMedCrossRefGoogle Scholar
  12. 12.
    Flemming RV, Walsh TJ, Anaissie EJ (2002) Emerging and less common fungal pathogens. Infect Dis Clin North Am 16:915–933CrossRefGoogle Scholar
  13. 13.
    Odero RO, Lacasse A, Mazumber S, Gelfand MS, Cleveland KO (2009) Trichosporon asahii infection in an HIV-positive patient. AIDS 23:1027–1033. doi: 10.1097/QAD.0b013e328329d068 PubMedCrossRefGoogle Scholar
  14. 14.
    Di Bonaventura G, Pompilio A, Picciani C, Iezzi M, D’Antonio D, Piccolomini R (2006) Biofilm formation by the emerging fungal pathogen Trichosporonasahii: development, architecture, and antifungal resistance. Antimicrob Agents Chemother 50:3269–3276. doi: 10.1128/AAC.00556-06 PubMedCrossRefGoogle Scholar
  15. 15.
    Poojary A, Sapre G (2009) Kodamaea ohmeri infection in a neonate. Indian Pediatr 46:629–631PubMedGoogle Scholar
  16. 16.
    Lee JS, Shin JH, Kim MN, Jung SI, Park KH, Cho D, Kee SJ, Shin MG, Suh SP, Ryang DW (2007) Kodamaea ohmeri isolates from patients in a university hospital: identification, antifungal susceptibility, and pulsed-field gel electrophoresis analysis. J Clin Microbiol 45:1005–1010. doi: 10.1128/JCM.02264-06 PubMedCrossRefGoogle Scholar
  17. 17.
    Yang BH, Peng MY, Hou SJ, Sun JR, Lee SY, Lu JJ (2009) Fluconazole-resistant Kodamaea ohmeri fungemia associated with cellulitis: case report and review of the literature. Int J Infect Dis 13:e493–e497. doi: 10.1016/j.ijid.2009.02.003 PubMedCrossRefGoogle Scholar
  18. 18.
    Chiu CH, Wang YC, Shang ST, Chang FY (2010) Kodamaea ohmeri fungaemia successfully treated with caspofungin. Int J Antimicrob Agents 35:93–99. doi: 10.1016/j.ijantimicag.2009.09.010 CrossRefGoogle Scholar
  19. 19.
    Shang ST, Lin JC, Ho SJ, Yang YS, Chang FY, Wang NC (2010) The emerging life-threatening opportunistic fungal pathogen Kodamaea ohmeri: optimal treatment and literature review. J Microbiol Immunol Infect 43:200–206PubMedCrossRefGoogle Scholar
  20. 20.
    Pires-Gonçalves RH, Miranda ET, Baeza LC, Matsumoto MT, Zaia JE, Mendes-Giannini MJS (2007) Genetic relatedness of commensal strains of Candida albicans carried in the oral cavity of patient’s dental prosthesis users in Brazil. Mycopathologia 164:255–263. doi: 10.1007/s11046-007-9052-5 PubMedCrossRefGoogle Scholar
  21. 21.
    Menon T, Herrera M, Periasamy S, Palanivelu V, Sikhamani R, Wickes B (2009) Oral candidiasis caused by Kodamaea ohmeri in an HIV patient in Chennai, India. Mycoses 53:458–459. doi: 10.1111/j.1439-0507.2009.01731.x PubMedCrossRefGoogle Scholar
  22. 22.
    Giuliani F, Martinelli M, Cocchi A, Arbia D, Fantetti L, Roncucci G (2010) In vitro resistance selection studies of RLP068/Cl, a new Zn(II) phthalocyanine suitable for antimicrobial photodynamic therapy. Antimicrob Agents Chemother 54:637–642. doi: 10.1128/AAC.00603-09 PubMedCrossRefGoogle Scholar
  23. 23.
    Dovigo LN, Pavarina AC, Mima EGO, Giampaolo ET, Vergani CE, Bagnato VS (2011) Fungicidal effect of photodynamic therapy against fluconazole-resistant Candida albicans and Candida glabrata. Mycoses 54:123–130. doi: 10.1111/j.1439-0507.2009.01769.x PubMedCrossRefGoogle Scholar
  24. 24.
    Maisch T (2007) Anti-microbial photodynamic therapy: useful in the future? Lasers Med Sci 22:83–91. doi: 10.1007/s10103-006-0409-7 PubMedCrossRefGoogle Scholar
  25. 25.
    Pleatzer K, Krammer B, Berlanda J, Berr F, Kiesslich T (2009) Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers Med Sci 24:259–268. doi: 10.1007/s10103-008-0539-1 CrossRefGoogle Scholar
  26. 26.
    Wainwright M (1998) Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 42:13–28PubMedCrossRefGoogle Scholar
  27. 27.
    Longo JPF, Leal SC, Simioni AR, Almeida-Santos MFM, Tedesco AC, Azevedo RB (2011) Photodynamic therapy disinfection of carious tissue mediated by aluminum-chloride-phthalocyanine entrapped in cationic liposomes: an in vitro and clinical study. Lasers Med Sci. doi: 10.1007/s10103-011-0962-6, In press
  28. 28.
    Mantareva V, Kussovski V, Angelov I, Borisova E, Avramov L, Schnurpfeil G, Wöhrle D (2007) Photodynamic therapy of water-soluble phthalocyanine zinc(II) complexes against pathogenic microorganisms. Bioorg Med Chem 15:4829–4835. doi: 10.1016/j.bmc.2007.04.069 PubMedCrossRefGoogle Scholar
  29. 29.
    Mantareva V, Kussovski V, Angelov I, Wöhrle D, Dimitrov R, Popova E, Dimitrov S (2011) Non- aggregated Ga(III)- phthalocyanines in the photodynamic inactivation of planktonic and biofilm cultures of pathogenic microorganisms. Photochem Photobiol Sci 10:91–102. doi: 10.1039/b9pp00154a PubMedCrossRefGoogle Scholar
  30. 30.
    Rosseti FC, Lopes LB, Carollo ARH, Thomazini JA, Tedesco AC, Bentley MVLB (2011) A delivery system to avoid self-aggregation and to improve in vitro and in vivo skin delivery of a phthalocyanine derivative used in the photodynamic therapy. J Control Release. doi: 10.1016/j.jconrel.2011.06.034, In press
  31. 31.
    Séguier S, Souza SLS, Sverzut ACV, Simioni AR, Primo FL, Bodineau A, Corrêa VMA, Coulomb B, Tedesco AC (2010) Impact of photodynamic therapy on inflammatory cells during human chronic periodontitis. J Photochem Photobiol B 101:348354. doi: 10.1016/j.jphotobiol.2010.08.007 CrossRefGoogle Scholar
  32. 32.
    Primo FL, Bentley MVLB, Tedesco AC (2008) Photophysical studies and in vitro skin permeation/retention of foscan/nanoemulsion (NE) applicable to PDT skin cancer treatment. J Nanosci Nanotechnol 8:340–347PubMedCrossRefGoogle Scholar
  33. 33.
    Jin Y, Samaranayake LP, Samaranayake Y, Yip HK (2004) Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars. Arch Oral Biol 49:789–798. doi: 10.1016/j.archralbio.2004.04.011 PubMedCrossRefGoogle Scholar
  34. 34.
    Parahitiyawa NB, Samaranayake YH, Samaranayake LP, Ye J, Tsang PWK, Cheung BPK, Yau JYY, Yeung SKW (2006) Interspecies variation in Candida biofilm formation studied using the Calgary biofilm device. APMIS 114:298–306PubMedCrossRefGoogle Scholar
  35. 35.
    Silva S, Henriques M, Martins A, Oliveira R, Williams D, Azeredo J (2009) Biofilms of non- Candida albicans Candida species: quantification, structure and matrix composition. Med Mycol 47:681–689. doi: 10.3109/13693780802549594 PubMedCrossRefGoogle Scholar
  36. 36.
    Souza SC, Junqueira JC, Balducci I, Koga-Ito CY, Munin E, Jorge AOC (2006) Photosensitization of different Candida species by low-power laser light. Photochem Photobiol B Biol 83:34–38. doi: 10.1016/j.jphotobiol.2005.12.002 CrossRefGoogle Scholar
  37. 37.
    Souza RC, Junqueira JC, Rossoni RD, Pereira CA, Munin E, Jorge AOC (2010) Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers Med Sci 25:385–389. doi: 10.1007/s10103-009-0706-z PubMedCrossRefGoogle Scholar
  38. 38.
    Boyce JM, Pittet D (2002) Guideline for hand hygiene in health-care settings. Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. 51(RR16):1–45Google Scholar
  39. 39.
    Hawser SP, Douglas LJ (1995) Resistence of Candida albicans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother 39:2128–2131PubMedCrossRefGoogle Scholar
  40. 40.
    Seneviratne CJ, Silva WJ, Jin LJ, Samaranayake YH, Samaranayake LP (2009) Architectural analysis, viability assessment and growth kinetics of Candida albicans and Candida glabrata biofilms. Arch Oral Biol 54:1052–1060. doi: 10.1016/j.archoralbio.2009.08.002 PubMedCrossRefGoogle Scholar
  41. 41.
    Kuhn DM, George T, Chandra J, Mukherjee PK, Channoum MA (2002) Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother 46:1773–1780. doi: 10.1128/AAC.46.6.1773-1780.2002 PubMedCrossRefGoogle Scholar
  42. 42.
    Hood SV, Moore CB, Denning DW (1996) Isolation of Candida norvegensis from clinical specimens: four case reports. Clin Infect Dis 23:1185–1187PubMedCrossRefGoogle Scholar
  43. 43.
    Blankenship JR, Mitchell AP (2006) How to build a biofilm: a fungal perspective. Curr Opin Microbiol 9:588–594. doi: 10.1016/j.mib.2006.10.003 PubMedCrossRefGoogle Scholar
  44. 44.
    Pereira CA, Romeiro RL, Costa ACBP, Machado AKS, Junqueira JC, Jorge AOC (2011) Susceptibility of Candida albicans, Staphylococcus aureus, and Streptococcus mutans biofilms to photodynamic inactivation: an in vitro study. Lasers Med Sci 26:341–348. doi: 10.1007/s10103-010-0852-3 PubMedCrossRefGoogle Scholar
  45. 45.
    Barros JD, Nascimento AMN, Araújo FJS, Braz RFS, Andrade VS, Theelen B, Boekhout T, Illnait-Zaragozi MT, Gouveia MNG, Fernandes MC, Monteiro MGL, Oliveira MTB (2009) Kodamaea (Pichia) ohmeri fungemia in a pediatric patient admitted in a public hospital. Med Mycol 47:775–779. doi: 10.3109/13693780902980467 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2012

Authors and Affiliations

  • J. C. Junqueira
    • 1
  • A. O. C. Jorge
    • 1
  • J. O. Barbosa
    • 1
  • R. D. Rossoni
    • 1
  • S. F. G. Vilela
    • 1
  • A. C. B. P. Costa
    • 1
  • F. L. Primo
    • 2
  • J. M. Gonçalves
    • 2
  • A. C. Tedesco
    • 2
  • J. M. A. H. Suleiman
    • 3
  1. 1.Department of Biosciences and Oral Diagnosis, School of Dentistry of São José dos CamposUNESP- Univ Estadual PaulistaSão José dos CamposBrazil
  2. 2.Departamento de Química, Laboratório de Fotobiologia e Fotomedicina, Centro de Nanotecnologia e Engenharia Tecidual de Ribeirão Preto, Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  3. 3.Emílio Ribas Institute of Infectious DiseasesSão PauloBrazil

Personalised recommendations