Lasers in Medical Science

, Volume 27, Issue 3, pp 655–660 | Cite as

Low-level laser irradiation, cyclooxygenase-2 (COX-2) expression and necrosis of random skin flaps in rats

  • Ivaldo Esteves Junior
  • Igor B. Masson
  • Celina T. F. Oshima
  • Ana Paula R. Paiotti
  • Richard E. Liebano
  • Helio Plapler
Original Article


Skin flaps are still a matter of concern among surgeons, as failures can occur leading to flap necrosis. However, low-level laser irradiation has been reported as an effective tool to improve the viability of ischemic flaps, yet its mechanisms of action remain unclear. We investigated the effect of low-level laser irradiation on the viability of random skin flaps in rats and determined COX-2 expression in the flap pedicle. The study animals comprised 24 EPM-1 Wistar rats which were randomly allocated into three equal groups. A cranially based dorsal random skin flap measuring 10 × 4 cm was created in all the animals. In one group, laser irradiation was simulated (sham group), and in the other two groups the animals were irradiated at 12 points with 0.29 J at 20 mW (energy density 10.36 J/cm2, irradiance 0.71 W/cm2), or with 7.3 J at 100 mW (energy density 260.7 J/cm2, irradiance 3.57 W/cm2). These procedures were applied to the cranial half of the flap immediately after surgery and were repeated on days 2 and 5 after surgery. The percentage necrotic area was determined on day 7 after surgery by the paper template method. The immunohistochemical expression of COX-2 in the samples was given scores from 0 to 3. The necrotic area was smaller in group irradiated at 7.3 J compared to sham-treated group and to the group irradiated at 0.29 J (P < 0.05); there was no difference between the sham-treated group and group irradiated at 0.29 J. COX-2 expression was lower in the group irradiated at 7.3 J than in the sham-treated group and the group irradiated at 0.29 J (P < 0.001). Low-level laser therapy was effective in decreasing random skin flap necrosis in rats using a laser energy of 7.30 J per point. Laser irradiation also decreased the expression of COX-2 in the flap pedicle.


COX-2 LLLT Surgical flap Viability 


Conflicts of interest

The authors have no conflict of interest to disclose.


  1. 1.
    Kerrigan CL (1983) Skin flap failure: pathophysiology. Plast Reconstr Surg 72(6):766–777PubMedCrossRefGoogle Scholar
  2. 2.
    Esteves Junior I, Tacani PM, Liggieri VC, Ruggi BG, Ferreira LM, Liebano RE (2009) Histamine iontophoresis on the viability of random skin flap in rats. Acta Cir Bras 24(1):48–51PubMedCrossRefGoogle Scholar
  3. 3.
    Gherardini G, Lundeberg T, Cui JG, Eriksson SV, Trubek S, Linderoth B (1999) Spinal cord stimulation improves survival in ischemic skin flaps: an experimental study of the possible mediation by calcitonin gene-related peptide. Plast Reconstr Surg 103(4):1221–1228PubMedCrossRefGoogle Scholar
  4. 4.
    Kubota J (2002) Effects of diode laser therapy on blood flow in axial pattern flaps in the rat model. Lasers Med Sci 17(3):146–153. doi: 10.1007/s101030200024 PubMedCrossRefGoogle Scholar
  5. 5.
    Liebano RE, Ferreira LM, Neto MS (2002) The effect of trans-cutaneous electrical nerve stimulation on the viability of random skin flaps in rats. Can J Plast Surg 10(4):151–154Google Scholar
  6. 6.
    Pazoki-Toroudi H, Ajami M, Habibey R, Hajiaboli E, Firooz A (2009) The effect of enalapril on skin flap viability is independent of angiotensin II AT1 receptors. Ann Plast Surg 62(6):699–702. doi: 10.1097/SAP.0b013e3181877afa PubMedCrossRefGoogle Scholar
  7. 7.
    Pinfildi CE, Liebano RE, Hochman BS, Ferreira LM (2005) Helium-neon laser in viability of random skin flap in rats. Lasers Surg Med 37(1):74–77. doi: 10.1002/lsm.20190 PubMedCrossRefGoogle Scholar
  8. 8.
    Prado RP, Liebano RE, Hochman B, Pinfildi CE, Ferreira LM (2006) Experimental model for low level laser therapy on ischemic random skin flap in rats. Acta Cir Bras 21(4):258–262PubMedCrossRefGoogle Scholar
  9. 9.
    Prado RP, Pinfildi CE, Liebano RE, Hochman BS, Ferreira LM (2009) Effect of application site of low-level laser therapy in random cutaneous flap viability in rats. Photomed Laser Surg 27(3):411–416. doi: 10.1089/pho.2008.2320 PubMedCrossRefGoogle Scholar
  10. 10.
    Almeida-Lopes L, Rigau J, Zangaro RA, Guidugli-Neto J, Jaeger MM (2001) Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29(2):179–184. doi: 10.1002/lsm.1107 PubMedCrossRefGoogle Scholar
  11. 11.
    Bolognani L, Majni G, Costato M, Milani M (1993) ATPase and ATPsynthetase activity in myosin exposed to low power laser and pulsed electromagnetic fields. Bioelectrochem Bioenerg 32(2):155–164CrossRefGoogle Scholar
  12. 12.
    Karu TI (1988) Molecular mechanism of low-power lasertherapy. Lasers Life Sci 2:53–74Google Scholar
  13. 13.
    Aimbire F, Ligeiro de Oliveira AP, Albertini R, Correa JC, Ladeira de Campos CB, Lyon JP, Silva JA Jr, Costa MS (2008) Low level laser therapy (LLLT) decreases pulmonary microvascular leakage, neutrophil influx and IL-1beta levels in airway and lung from rat subjected to LPS-induced inflammation. Inflammation 31(3):189–197. doi: 10.1007/s10753-008-9064-4 PubMedCrossRefGoogle Scholar
  14. 14.
    Boschi ES, Leite CE, Saciura VC, Caberlon E, Lunardelli A, Bitencourt S, Melo DA, Oliveira JR (2008) Anti-Inflammatory effects of low-level laser therapy (660 nm) in the early phase in carrageenan-induced pleurisy in rat. Lasers Surg Med 40(7):500–508. doi: 10.1002/lsm.20658 PubMedCrossRefGoogle Scholar
  15. 15.
    Safavi SM, Kazemi B, Esmaeili M, Fallah A, Modarresi A, Mir M (2008) Effects of low-level He-Ne laser irradiation on the gene expression of IL-1beta, TNF-alpha, IFN-gamma, TGF-beta, bFGF, and PDGF in rat’s gingiva. Lasers Med Sci 23(3):331–335. doi: 10.1007/s10103-007-0491-5 PubMedCrossRefGoogle Scholar
  16. 16.
    Finkel T (2003) Oxidant signals and oxidative stress. Curr Opin Cell Biol 15(2):247–254PubMedCrossRefGoogle Scholar
  17. 17.
    Araujo LF, Soeiro AdeM, Fernandes JdeL, Serrano Júnior CV (2005) Eventos cardiovasculares: um efeito de classe dos inibidores de COX-2. Arq Bras Cardiol 85(3):222–229PubMedCrossRefGoogle Scholar
  18. 18.
    Kummer CL, Coelho TC (2002) Cycloxygenase-2 inhibitors nonsteroid anti-inflammatory drugs: current issues. Rev Bras Anestesiol 52(4):498–512PubMedCrossRefGoogle Scholar
  19. 19.
    Schürmann C, Seitz O, Sader R, Pfeilschifter J, Goren I, Frank S (2010) Role of wound macrophages in skin flap loss or survival in an experimental diabetes model. Br J Surg 97(9):1437–1451. doi: 10.1002/bjs.7123 PubMedCrossRefGoogle Scholar
  20. 20.
    Schürmann C, Seitz O, Klein C, Sader R, Pfeilschifter J, Muhl H, Goren I, Frank S (2009) Tight spatial and temporal control in dynamic basal to distal migration of epithelial inflammatory responses and infiltration of cytoprotective macrophages determine healing skin flap transplants in mice. Ann Surg 249(3):519–534. doi: 10.1097/SLA.0b013e31819a8d6c PubMedCrossRefGoogle Scholar
  21. 21.
    Dikici MB, Coskunfirat OK, Uslu A (2009) Effect of cyclooxygenase-2 on ischemic preconditioning of skin flaps. Ann Plast Surg 63(1):100–104. doi: 10.1097/SAP.0b013e3181893853 PubMedCrossRefGoogle Scholar
  22. 22.
    Albertini R, Aimbire F, Villaverde AB, Silva JA Jr, Costa MS (2007) COX-2 mRNA expression decreases in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation after low level laser therapy. Inflamm Res 56(6):228–229. doi: 10.1007/s00011-007-6211-6 PubMedCrossRefGoogle Scholar
  23. 23.
    Lopes NN, Plapler H, Chavantes MC, Lalla RV, Yoshimura EM, Alves MT (2009) Cyclooxygenase-2 and vascular endothelial growth factor expression in 5-fluorouracil-induced oral mucositis in hamsters: evaluation of two low-intensity laser protocols. Support Care Cancer 17(11):1409–1415. doi: 10.1007/s00520-009-0603-9 PubMedCrossRefGoogle Scholar
  24. 24.
    McFarlane RM, Deyoung G, Henry RA (1965) The design of a pedicle flap in the rat to study necrosis and its prevention. Plast Reconstr Surg 35:177–182PubMedCrossRefGoogle Scholar
  25. 25.
    Kaufman T, Angel MF, Eichenlaub EH, Levin M, Hurwitz DJ, Futrell JW (1985) The salutary effects of the bed on the survival of experimental flaps. Ann Plast Surg 14(1):64–73PubMedCrossRefGoogle Scholar
  26. 26.
    Korlof B, Ugland O (1966) Flaps and flap necrosis. Improving the circulation in skin flaps with Complamin and with Dicoumarol: animal experiments. Acta Chir Scand 131(5):408–412PubMedGoogle Scholar
  27. 27.
    Sasaki GH, Pang CY (1980) Hemodynamics and viability of acute neurovascular island skin flaps in rats. Plast Reconstr Surg 65(2):152–158PubMedCrossRefGoogle Scholar
  28. 28.
    Hara A, Okayasu I (2004) Cyclooxygenase-2 and inducible nitric oxide synthase expression in human astrocytic gliomas: correlation with angiogenesis and prognostic significance. Acta Neuropathol 108(1):43–48. doi: 10.1007/s00401-004-0860-0 PubMedCrossRefGoogle Scholar
  29. 29.
    Amir A, Solomon AS, Giler S, Cordoba M, Hauben DJ (2000) The influence of helium-neon laser irradiation on the viability of skin flaps in the rat. Br J Plast Surg 53(1):58–62. doi: 10.1054/bjps.1999.3185 PubMedCrossRefGoogle Scholar
  30. 30.
    Assis LR, Marcolino A, Pinfildi CE, Prado RP (2005) Comparison of the 904 nm and 670 nm diode laser in the viability of random skin flap in rats. Photomed Laser Surg 23(1):abstract 118Google Scholar
  31. 31.
    Bossini PS, Fangel R, Habenschus RM, Renno AC, Benze B, Zuanon JA, Neto CB, Parizotto NA (2009) Low-level laser therapy (670 nm) on viability of random skin flap in rats. Lasers Med Sci 24(2):209–213. doi: 10.1007/s10103-008-0551-5 PubMedCrossRefGoogle Scholar
  32. 32.
    Costa MS, Pinfildi CE, Gomes HC, Liebano RE, Arias VE, Silveira TS, Ferreira LM (2010) Effect of low-level laser therapy with output power of 30 mW and 60 mW in the viability of a random skin flap. Photomed Laser Surg 28(1):57–61. doi: 10.1089/pho.2008.2444 PubMedCrossRefGoogle Scholar
  33. 33.
    Pinfildi CE, Liebano RE, Hochman BS, Enokihara MM, Lippert R, Gobbato RC, Ferreira LM (2009) Effect of low-level laser therapy on mast cells in viability of the transverse rectus abdominis musculocutaneous flap. Photomed Laser Surg 27(2):337–343. doi: 10.1089/pho.2008.2295 PubMedCrossRefGoogle Scholar
  34. 34.
    Prado R, Neves L, Marcolino A, Ribeiro T, Pinfildi C, Ferreira L, Thomazini J, Piccinato C (2010) Effect of low-level laser therapy on malondialdehyde concentration in random cutaneous flap viability. Photomed Laser Surg 28(3):379–384. doi: 10.1089/pho.2009.2535 PubMedCrossRefGoogle Scholar
  35. 35.
    Smith RJ, Birndorf M, Gluck G, Hammond D, Moore WD (1992) The effect of low-energy laser on skin-flap survival in the rat and porcine animal models. Plast Reconstr Surg 89(2):306–310PubMedCrossRefGoogle Scholar
  36. 36.
    Cury V, Bossini PS, Fangel R, Crusca Jde S, Renno AC, Parizotto NA (2009) The effects of 660 nm and 780 nm laser irradiation on viability of random skin flap in rats. Photomed Laser Surg 27(5):721–724. doi: 10.1089/pho.2008.2383 PubMedCrossRefGoogle Scholar
  37. 37.
    Cook-Mills JM, Deem TL (2005) Active participation of endothelial cells in inflammation. J Leukoc Biol 77(4):487–495. doi: 10.1189/jlb.0904554 PubMedCrossRefGoogle Scholar
  38. 38.
    Lim W, Lee S, Kim I, Chung M, Kim M, Lim H, Park J, Kim O, Choi H (2007) The anti-inflammatory mechanism of 635 nm light-emitting-diode irradiation compared with existing COX inhibitors. Lasers Surg Med 39(7):614–621. doi: 10.1002/lsm.20533 PubMedCrossRefGoogle Scholar
  39. 39.
    Sakurai Y, Yamaguchi M, Abiko Y (2000) Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts. Eur J Oral Sci 108(1):29–34PubMedCrossRefGoogle Scholar
  40. 40.
    Mayahara K, Yamaguchi A, Sakaguchi M, Igarashi Y, Shimizu N (2010) Effect of Ga-Al-As laser irradiation on COX-2 and cPLA2-alpha expression in compressed human periodontal ligament cells. Lasers Surg Med 42(6):489–493. doi: 10.1002/lsm.20871 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2011

Authors and Affiliations

  • Ivaldo Esteves Junior
    • 1
    • 2
    • 3
  • Igor B. Masson
    • 1
  • Celina T. F. Oshima
    • 4
  • Ana Paula R. Paiotti
    • 4
  • Richard E. Liebano
    • 5
  • Helio Plapler
    • 1
  1. 1.Department of Surgery, Division of Operative Technique and Experimental SurgeryFederal University of São Paulo - UNIFESPSão PauloBrazil
  2. 2.Paulista University – UNIPSão PauloBrazil
  3. 3.Mackenzie Presbyterian UniversitySão PauloBrazil
  4. 4.Department of PathologyFederal University of São Paulo - UNIFESPSão PauloBrazil
  5. 5.Department of Physical TherapyUniversidade Cidade de São Paulo - UNICIDSão PauloBrazil

Personalised recommendations