Lasers in Medical Science

, Volume 27, Issue 3, pp 607–614 | Cite as

Sensitivity of A-549 human lung cancer cells to nanoporous zinc oxide conjugated with Photofrin

  • Muhammad Fakhar-e-Alam
  • Syed Muhammad Usman Ali
  • Zafar Hussain Ibupoto
  • Khun Kimleang
  • M. Atif
  • Muhammad Kashif
  • Foo Kai Loong
  • Uda Hashim
  • Magnus Willander
Original Article


In the present study, we demonstrated the use of nanoporous zinc oxide (ZnO NPs) in photodynamic therapy. The ZnO NPs structure possesses a high surface to volume ratio due to its porosity and ZnO NPs can be used as an efficient photosensitizer carrier system. We were able to grow ZnO NPs on the tip of borosilicate glass capillaries (0.5 μm diameter) and conjugated this with Photofrin for efficient intracellular drug delivery. The ZnO NPs on the capillary tip could be excited intracellularly with 240 nm UV light, and the resultant 625 nm red light emitted in the presence of Photofrin activated a chemical reaction that produced reactive oxygen species (ROS). The procedure was tested in A-549 cells and led to cell death within a few minutes. The morphological changes in necrosed cells were examined by microscopy. The viability of control and treated A-549 cells with the optimum dose of UV/visible light was assessed using the MTT assay, and ROS were detected using a fluorescence microscopy procedure.


Lung cancer (A-549) cells MTT assay Photofrin Cell viability Nanoporous zinc oxide (ZnO NPs) Reactive oxygen species (ROS) Photodynamic therapy (PDT) 



M. Fakhar-e-Alam is grateful for financial support from the Higher Education Commission (HEC), Islamabad, Pakistan.


  1. 1.
    Wilson BC, Patterson MS, Lilge L (1997) Implicit and explicit dosimetry in photodynamic therapy: a new paradigm. Lasers Med Sci 12:182–199PubMedCrossRefGoogle Scholar
  2. 2.
    Kishwar S, Asif MH, Nur O, Willander M, Larsson PO (2010) Intracellular ZnO nanorods conjugated with protoporphyrin for local mediated photochemistry and efficient treatment of single cancer cell. Nanoscale Res Lett 5:1669–1674PubMedCrossRefGoogle Scholar
  3. 3.
    Lopez T, Ortiz E, Alvarez M, Navarrete J, Odriozola JA, Ortega FM, Mozo EA, Escobar P, Espinoza KA, Rivero IA (2010) Study of the stabilization of zinc phthalocyanine in sol-gel TiO2 for photodynamic therapy applications. Nanomedicine 6:777–786PubMedCrossRefGoogle Scholar
  4. 4.
    Koo OM, Rubinstein I, Onyuksel H (2005) Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine 1:193–212PubMedCrossRefGoogle Scholar
  5. 5.
    Wang M, Thanou M (2010) Targeting nanoparticles to cancer. Pharmacol Res 62:90–99PubMedCrossRefGoogle Scholar
  6. 6.
    Stupp SI (2005) Introduction: functional nanostructures. Chem Rev 105:1023–1024CrossRefGoogle Scholar
  7. 7.
    Emerich DF, Thanos CG (2006) The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol Eng 23:171–184PubMedCrossRefGoogle Scholar
  8. 8.
    Roduner E (2006) Size matters: why the nanomaterials are different. Chem Soc Rev 35:583–592PubMedCrossRefGoogle Scholar
  9. 9.
    Allison RR, Sibata C, Downie GH, Cuenca RE (2006) Photodynamic therapy of the intact breast. Photodiagn Photodyn Ther 3:139–146CrossRefGoogle Scholar
  10. 10.
    DeRosa MC, Crutchley RJ (2002) Photosensitized singlet oxygen and its applications. Coord Chem Rev 233:351–371CrossRefGoogle Scholar
  11. 11.
    Bonnett R (2002) Progress with heterocyclic photosensitizers for the photodynamic therapy of tumours. J Heterocyclic Chem 39:455–470CrossRefGoogle Scholar
  12. 12.
    Bonnett R, Martínez G (2001) Photobleaching of sensitisers used in photodynamic therapy. Tetrahedron 57:9513–9547CrossRefGoogle Scholar
  13. 13.
    Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 1:279–293CrossRefGoogle Scholar
  14. 14.
    Atif M, Stringer MR, Cruse-Sawyer JE, Brown SB (2003) Intracellular fluorescence photobleaching dynamics of mTHPC. Lasers Med Sci 18:S51CrossRefGoogle Scholar
  15. 15.
    Berlanda J, Kiesslich T, Oberdanner CB, Obermair FJ, Krammer B, Plaetzer K (2006) Characterization of apoptosis induced by photodynamic treatment with hypericin in A431 human epidermoid carcinoma cells. J Environ Pathol Toxicol Oncol 25:173–188PubMedGoogle Scholar
  16. 16.
    Atif M (2006) PDT photosensitizer concentration effects upon photobleaching dynamics. Proceedings of the 6th International Symposium on Photodynamic Diagnosis and Therapy in Clinical Practice, ItalyGoogle Scholar
  17. 17.
    Atif M, Dyer PE, Snelling HV, Paget T, Stringer MR (2007) Two-photon excitation studies of mTHPC photosensitizer and photodynamic activity in an epithelial cell line. Photodiagn Photodyn Ther 4:106–111CrossRefGoogle Scholar
  18. 18.
    Atif M, Firdous S, Khurshid A, Noreen L, Zaidi SSZ, Ikram M (2009) In vitro study of 5 aminolevulinic acid (5-ALA) based photodynamic therapy for apoptosis in human cervical HeLa cell line. Laser Phys Lett 6:886–891CrossRefGoogle Scholar
  19. 19.
    Khurshid A, Atif M, Firdous S, Zaidi SSZ, Salman R, Ikram M (2010) Photodynamic therapy of human larynx squamous cell carcinoma (Hep2c) using 5-aminolevulanic acid in vitro. Laser Phys 20:1673–1678CrossRefGoogle Scholar
  20. 20.
    Atif M, Alam MF, Firdous S, Zaidi SSZ, Salman R, Ikram M (2010) Study of the efficacy of 5ALA-mediated photodynamic therapy on human rhabdomyosarcoma cell line (RD). Laser Phys Lett 7:757–764CrossRefGoogle Scholar
  21. 21.
    Atif M, Firdous S, Nawaz M (2010) Laser induced effects in different biological samples. Lasers Med Sci 25:545–550PubMedCrossRefGoogle Scholar
  22. 22.
    Alam MF, Atif M, Alsalhi MS, Siddique M, Kishwar S, Qadir MI (2011) Role of ALA sensitivity in HepG2 cell in the presence of diode laser. Laser Phys 21:1–9CrossRefGoogle Scholar
  23. 23.
    Ullah H, Atif M, Firdous S, Mehmood MS, Ikram M, Kurachi C, Grecco C, Nicolodelli G, Bagnato VS (2010) Femtosecond light distribution at skin and liver of rats: analysis for use in optical diagnostics. Laser Phys Lett 7:889–898CrossRefGoogle Scholar
  24. 24.
    Fulati A, Ali SM, Asif MH, Alvi NH, Willander M, Brännmark C, Strålfors P, Börjesson SI, Elinder F, Danielsson B (2010) An intracellular glucose biosensor based on nanoflake ZnO. Sens Actuators B 150:673–680CrossRefGoogle Scholar
  25. 25.
    Alvi NH, Ali SM, Hussain S, Nur O, Willander M (2011) Fabrication and comparative optical characterization of n-ZnO nanostructures (nanowalls, nanorods, nanoflowers and nanotubes)/p-GaN white light emitting diodes. Scripta Materiala 64:697–700CrossRefGoogle Scholar
  26. 26.
    Alam MF, Roohi S, Atif M, Firdous S, Amir N, Zahoor R (2010) Labelling and optimization of PHOTOFRIN® with 99mTc. Radiochim Acta 98:813–818CrossRefGoogle Scholar
  27. 27.
    Guo D, Wu C, Jiang H, Li Q, Wang X, Chen B (2008) Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation. J Photochem Photobiol B 93:119–126PubMedCrossRefGoogle Scholar
  28. 28.
    Alam MF, Kishwar S, Khan Y, Siddique M, Atif M, Nur O, Willander M (2011) Tumoricidal effects of nanomaterials in HeLa cell line. Laser Phys. doi: 10.1134/S1054660X1119011
  29. 29.
    Chan WC, Nie S (1998) Quantum dot bio conjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018PubMedCrossRefGoogle Scholar
  30. 30.
    Kolarova H, Bajgar R, Tomankova K, Krestyn L, Dolezal L, Halek J (2007) In vitro study of reactive oxygen species production during photodynamic therapy in ultrasound-pretreated cancer cells. Physiol Res 56(suppl 1):S27–S32PubMedGoogle Scholar
  31. 31.
    Nel A, Xia T, Madler L, Li L (2006) Toxic potential of materials at the nano-level. Science 311:625–627CrossRefGoogle Scholar
  32. 32.
    Li Y, Tian X, Lu Z, Yang C, Yang G, Zhou X, Uao H, Zhu Z, Xi Z, Yang X (2010) Mechanism for alpha MnO2 nanowire-induced cytotoxicity in HeLa cells. J Nanosci Nanotechnol 10:397–404PubMedCrossRefGoogle Scholar
  33. 33.
    Zhu MT, Feng WY, Wang B, Wang TC, Gu YQ, Wang M, Yang HQ, Zhao YL, Chai ZF (2008) Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology 247:102–111PubMedCrossRefGoogle Scholar
  34. 34.
    Lin W, Xu Y, Huang CC, Ma Y, Shannon KB, Chen DR, Huang YW (2009) Toxicity of nano and micro-sized ZnO particles in human lung epithelial cells. J Nanopart Res 11:25–39CrossRefGoogle Scholar
  35. 35.
    Hirano S, Higo S, Tsukamoto N, Kobayashi E, Suzuki KT (1989) Pulmonary clearance and toxicity of zinc oxide instilled into the rat lung. Arch Toxicol 63:336–342CrossRefGoogle Scholar
  36. 36.
    Baek M, Kim MK, Cho HJ, Lee JA, Yu J, Chung HE, Choi SJ (2011) Factors influencing the cytotoxicity of zinc oxide nanoparticles: particle size and surface charge. J Phys Conf Ser 304:012044CrossRefGoogle Scholar
  37. 37.
    Moos PJ, Chung K, Woessner D, Honeggar M, Cutler NS, Veranth JM (2010) ZnO particulate matter requires cell contact for toxicity in human colon cells. Chem Res Toxicol 23:733–739PubMedCrossRefGoogle Scholar
  38. 38.
    Waters KM, Masiello LM, Zangar RC, Tarasevich BJ, Karin NJ, Quesenberry RD, Bandyopadhyay S, Teeguarden JG, Pounds JG, Thrall BD (2009) Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol Sci 107:553–569PubMedCrossRefGoogle Scholar
  39. 39.
    Liu CH, Lee CT, Tsai FC, Hsu SJ, Yang PM (2006) Gastroduodenal corrosive injury after oral zinc oxide. Ann Emerg Med 47:296PubMedCrossRefGoogle Scholar
  40. 40.
    Lindahl M, Leanderson P, Tagesson C (1998) Novel aspect on metal fume fever: zinc stimulates oxygen radical formation in human neutrophils. Hum Exp Toxicol 17:105–110PubMedCrossRefGoogle Scholar
  41. 41.
    Gordon T, Chen LC, Fine JM, Schlesinger RB, Su WY, Kimmel TA, Amdur MO (1992) Pulmonary effects of inhaled zinc oxide in human subjects, guinea pigs, rats, and rabbits. Am Ind Hyg Assoc J 53:503–509PubMedCrossRefGoogle Scholar
  42. 42.
    Lam HF, Chen LC, Ainsworth D, Peoples S, Amdur MO (1988) Pulmonary function of guinea pigs exposed to freshly generated ultrafine zinc oxide with and without spike concentrations. Am Ind Hyg Assoc J 49:333–341PubMedCrossRefGoogle Scholar
  43. 43.
    Conner MW, Flood WH, Rogers AE, Amdur MO (1988) Lung injury in guinea pigs caused by multiple exposures to ultrafine zinc oxide: changes in pulmonary lavage fluid. J Toxicol Environ Health 25:57–69PubMedCrossRefGoogle Scholar
  44. 44.
    Lam HF, Conner MW, Rogers AE, Fitzgerald S, Amdur MO (1985) Functional and morphologic changes in the lungs of guinea pigs exposed to freshly generated ultrafine zinc oxide. Toxicol Appl Pharmacol 78:29–38PubMedCrossRefGoogle Scholar
  45. 45.
    Sax NI, Lewis RJ (1989) Dangerous properties of industrial materials, 7th edn. Van Nostrand Reinhold, New YorkGoogle Scholar
  46. 46.
    Lomer MC, Hutchinson C, Volkert S, Greenfield SM, Catterall A, Thompson RP, Powell JJ (2004) Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn’s disease. Br J Nutr 92:947–955PubMedCrossRefGoogle Scholar
  47. 47.
    Lomer MC, Thompson RP, Powell JJ (2002) Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn’s disease. Proc Nutr Soc 61:123–130PubMedCrossRefGoogle Scholar
  48. 48.
    Lomer MC, Harvey RS, Evans SM, Thompson RP, Powell JJ (2001) Efficacy and tolerability of a low microparticle diet in a double blind, randomized, pilot study in Crohn’s disease. Eur J Gastroenterol Hepatol 13:101–106PubMedCrossRefGoogle Scholar
  49. 49.
    Powell JJ, Harvey RS, Ashwood P, Wolstencroft R, Gershwin ME, Thompson RP (2000) Immune potentiation of ultrafine dietary particles in normal subjects and patients with inflammatory bowel disease. J Autoimmun 14:99–105PubMedCrossRefGoogle Scholar
  50. 50.
    Lomer MC, Grainger SL, Ede R, Catterall AP, Greenfield SM, Cowan RE, Vicary FR, Jenkins AP, Fidler H, Harvey RS, Ellis R, McNair A, Ainley CC, Thompson RP, Powell JJ (2005) Lack of efficacy of a reduced microparticle diet in a multi-centred trial of patients with active Crohn’s disease. Eur J Gastroenterol Hepatol 17:377–384PubMedCrossRefGoogle Scholar
  51. 51.
    Li J, Guo D, Wang X, Wang H, Jiang H, Chen B (2010) The photodynamic effect of different size ZnO nanoparticles on cancer cell proliferation in vitro. Nanoscale Res Lett 5:1063–1071PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2011

Authors and Affiliations

  • Muhammad Fakhar-e-Alam
    • 1
    • 2
  • Syed Muhammad Usman Ali
    • 1
    • 3
  • Zafar Hussain Ibupoto
    • 1
  • Khun Kimleang
    • 1
  • M. Atif
    • 4
    • 6
  • Muhammad Kashif
    • 5
  • Foo Kai Loong
    • 5
  • Uda Hashim
    • 5
  • Magnus Willander
    • 1
  1. 1.Department of Science and TechnologyCampus Norrköping, Linköping UniversityNorrköpingSweden
  2. 2.Pakistan Institute of Engineering and Applied SciencesNilorePakistan
  3. 3.Department of Electronic EngineeringNED University of Engineering and TechnologyKarachiPakistan
  4. 4.Laser Diagnosis of Cancer, Physics and Astronomy Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  5. 5.Nano Biochip Research Group, Institute of Nano Electronic Engineering (INEE)University Malaysia Perlis (UniMAP)KangarMalaysia
  6. 6.National Institute of Laser and OptronicsNilorePakistan

Personalised recommendations