Lasers in Medical Science

, Volume 26, Issue 5, pp 673–687 | Cite as

Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review

Review Article


We review the different spectroscopic techniques including the most recent laser-induced breakdown spectroscopy (LIBS) for the characterization of materials in any phase (solid, liquid or gas) including biological materials. A brief history of the laser and its application in bioscience is presented. The development of LIBS, its working principle and its instrumentation (different parts of the experimental set up) are briefly summarized. The generation of laser-induced plasma and detection of light emitted from this plasma are also discussed. The merit and demerits of LIBS are discussed in comparison with other conventional analytical techniques. The work done using the laser in the biomedical field is also summarized. The analysis of different tissues, mineral analysis in different organs of the human body, characterization of different types of stone formed in the human body, analysis of biological aerosols using the LIBS technique are also summarized. The unique abilities of LIBS including detection of molecular species and calibration-free LIBS are compared with those of other conventional techniques including atomic absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy and mass spectroscopy, and X-ray fluorescence.


Laser LIBS Elemental analysis technique Biomaterials 


  1. 1.
    Radziemski LJ (1994) Review of selected analytical applications of laser plasmas and laser ablation, 1987–1994. Microchem J 50:218–234CrossRefGoogle Scholar
  2. 2.
    Song K, Lee Y, Sneddon J (1997) Applications of laser-induced breakdown spectroscopy. Appl Spectrosc Rev 32:183–235CrossRefGoogle Scholar
  3. 3.
    Rusak DA, Castle BC, Smith BW, Winefordner JD (1998) Recent trends and the future of laser-induced breakdown spectroscopy. Trends Anal Chem 17:453–461CrossRefGoogle Scholar
  4. 4.
    Sneddon J, Lee Y (1999) Novel and recent applications of elemental determination by laser-induced breakdown spectroscopy. Anal Lett 32:2143–2162CrossRefGoogle Scholar
  5. 5.
    Radziemski LJ (2002) From LASER to LIBS, the path of technology development. Spectrochim Acta B 57:1109–1114CrossRefGoogle Scholar
  6. 6.
    Song K, Lee Y, Sneddon J (2002) Recent developments in instrumentation for laser induced breakdown spectroscopy. Appl Spectrosc Rev 37:89–117CrossRefGoogle Scholar
  7. 7.
    Tognoni E, Palleschi V, Corsi M, Cristoforetti G (2002) Quantitative micro-analysis by laser-induced breakdown spectroscopy – a review of the experimental approaches. Spectrochim Acta B 57:1115–1130CrossRefGoogle Scholar
  8. 8.
    Song K, Lee Y, Sneddon J (2002) Application of laser-induced breakdown spectroscopy in biological and clinical samples. In: Sneddon J (ed) Advances in Atomic Spectroscopy, vol. 7. Elsevier, Amsterdam, pp 287–360Google Scholar
  9. 9.
    Winefordner JD, Gornushkin IB, Correll T, Gibb E, Smith BW, Omenetto N (2004) Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectroscopy, LIBS, a future super star. J Anal At Spectrom 19:1061–1083CrossRefGoogle Scholar
  10. 10.
    Vadillo JM, Laserna JJ (2004) Laser-induced plasma spectrometry: truly a surface analytical tool. Spectrochim Acta B 59:147–161CrossRefGoogle Scholar
  11. 11.
    Santos D Jr, Tarelho LVG, Krug FJ, Milor DMB, Martin Neto L, Vieira ND Jr (2006) Espectrometria de emissão óptica com plasma induzido por laser (LIBS): fundamentos, aplicações e perspectivas. Rev Anal 24:72–81Google Scholar
  12. 12.
    Pasquini C, Cortez J, Silva LMC, Gonzaga FB (2007) Laser induced breakdown spectroscopy. J Braz Chem Soc 18:463–512CrossRefGoogle Scholar
  13. 13.
    Liu XY, Zhang WJ (2008) Recent developments in biomedicine fields for laser induced breakdown spectroscopy. J Biomed Sci Eng 1:147–151CrossRefGoogle Scholar
  14. 14.
    Cremers DA, Chinni RC (2009) Laser-induced breakdown spectroscopy – capabilities and limitations. Appl Spectrosc Rev 44:457–506CrossRefGoogle Scholar
  15. 15.
    Cremers DA, Radziemski LJ (2006) Handbook of laser-induced breakdown spectroscopy. Wiley, New YorkCrossRefGoogle Scholar
  16. 16.
    Miziolek AW, Palleschi V, Schechter I (2006) Laser-induced breakdown spectroscopy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. 17.
    Singh JP, Thakur SN (2006) Laser-induced breakdown spectroscopy. Elsevier, AmsterdamGoogle Scholar
  18. 18.
    Kumar A, Yueh FY, Singh JP, Burgess S (2004) Characterization of malignant tissue cells by laser-induced breakdown spectroscopy. Appl Opt 43:5399–5403PubMedCrossRefGoogle Scholar
  19. 19.
    Einstein A (1917) Zur quantentheorie der Strahlung. Phys Zeit 18:121–128Google Scholar
  20. 20.
    Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187:493–494CrossRefGoogle Scholar
  21. 21.
    Mulvaney WP, Beck CW (1968) The laser beam in urology. J Urol 99:112–115PubMedGoogle Scholar
  22. 22.
    Gross AJ, Herrmann TRW (2007) History of lasers. World J Urol 25:217–220PubMedCrossRefGoogle Scholar
  23. 23.
    Carruth JAS, McKenzie AL (1986) Medical lasers – science and clinical practice. Hilger, BristolGoogle Scholar
  24. 24.
    McKenzie AL (1990) Physics of thermal processes in laser-tissue interaction. Phys Med Biol 35:1175–1209PubMedCrossRefGoogle Scholar
  25. 25.
    Peng Q, Juzeniene A, Chen J, Svaasand LO, Warloe T, Giercksky KE, Moan J (2008) Lasers in medicine. Rep Prog Phys 71:1–28CrossRefGoogle Scholar
  26. 26.
    Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissue. Chem Rev 103:577–644PubMedCrossRefGoogle Scholar
  27. 27.
    Müller GJ, Berlien P, Scholz C (2006) The medical laser. Med Laser Appl 21:99–108CrossRefGoogle Scholar
  28. 28.
    Johansson A, Kromer K, Sroka R, Stepp H (2008) Clinical optical diagnostics – status and perspectives. Med Laser Appl 23:155–174CrossRefGoogle Scholar
  29. 29.
    Crow P, Stone N, Kendall CA, Persad RA, Wright MPJ (2003) Optical diagnostics in urology: current applications and future prospects. BJU Int 92:400–407PubMedCrossRefGoogle Scholar
  30. 30.
    Brech F, Cross L (1962) Optical microemission stimulated by a ruby maser. Appl Spectrosc 16:59Google Scholar
  31. 31.
    Lee Y, Song K, Sneddon J (2000) Laser-induced breakdown spectrometry. Nova Science, Huntington, NYGoogle Scholar
  32. 32.
    Andrews DL (1990) Lasers in chemistry, 2nd edn. Springer, BerlinGoogle Scholar
  33. 33.
    Hou X, Jones BT (2000) Field instrumentation in atomic spectroscopy. Microchem J 66:115–145CrossRefGoogle Scholar
  34. 34.
    Cremers DA, Radziemski LJ (2006) History and fundamentals of LIBS. In: Miziolek AW, Palleschi V, Schechter I (eds) Laser-induced breakdown spectroscopy (LIBS): fundamentals and applications. Cambridge University Press, Cambridge, pp 1–39Google Scholar
  35. 35.
    Ingle J Jr, Crouch S (1988) Spectrochemical analysis. Prentice Hall, New JerseyGoogle Scholar
  36. 36.
    Sun Q, Tran M, Smith BW, Winefordner JD (2000) Zinc analysis in human skin by laser-induced breakdown spectroscopy. Talanta 52:293–300PubMedCrossRefGoogle Scholar
  37. 37.
    De Souza HP, Munin E, Alves LP, Redigolo ML, Pacheco MT (2003) Laser-induced breakdown spectroscopy in a biological tissue. XXVI ENFMC 2003 Annals of Optics, vol. 5Google Scholar
  38. 38.
    Zheng HN, Yueh FY, Burgess S, Singh JP (2006) Laser induced breakdown spectroscopy: application to tissue analysis. In: Laser applications to chemical, security and environmental analysis. Technical Digest (Optical Society of America, 2006), paper TuE7.Google Scholar
  39. 39.
    Gornushkin IB, Smith BW, Nasajpour H, Winefordner JD (1999) Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer. Anal Chem 71:5157–5164CrossRefGoogle Scholar
  40. 40.
    Adamson MD, Rehse SJ (2007) Detection of trace Al in model biological tissue with laser-induced breakdown spectroscopy. Appl Opt 46:5844–5852PubMedCrossRefGoogle Scholar
  41. 41.
    Myers MJ, Myers JD, Guo BP, Yang CX, Hardy CR, Myers JA, Myers AG, Christian SM (2008) Non-invasive in-situ detection of malignant skin tissue and other abnormalities using portable LIBS system with fiber spectrometer and eye-safe erbium glass laser. Proc SPIE 6863:68630WCrossRefGoogle Scholar
  42. 42.
    Tameze C, Vincelette R, Melikechi N, Zeljkovic V, Izquierdo E (2008) Empirical analysis of LIBS images for ovarian cancer detection. 8th International Workshop on Image Analysis for Multimedia Interactive Services. IEEE, Piscataway, NJ, pp 300–303Google Scholar
  43. 43.
    Samek O, Beddows DCS, Telle HH, Kaiser J, Liska M, Caceres JO, Urena AG (2001) Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples. Spectrochim Acta B 56:865–875CrossRefGoogle Scholar
  44. 44.
    Samek O, Telle HH, Beddows DCS (2001) Laser-induced breakdown spectroscopy: a tool for real-time, in vitro and in vivo identification of caries teeth. BMC Oral Health 1:1–9PubMedCrossRefGoogle Scholar
  45. 45.
    Samek O, Beddows DCS, Telle HH, Morris GW, Liska M, Kaiser J (1999) Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy. Appl Phys A 69:S179–S182Google Scholar
  46. 46.
    Samek O, Liska M, Kaiser J, Beddows DCS, Telle HH, Kukhlevsky SV (2000) Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials. J Clin Laser Med Surg 18:281–289PubMedGoogle Scholar
  47. 47.
    Sinescu C, Negrutiu M, Draganescu G, Todea C, Dodenciu D, Florita Z, Pop D (2008) Microleakage in dentistry: new methods for investigating the gaps in biomaterials. Proc SPIE 6843:68430PCrossRefGoogle Scholar
  48. 48.
    Negrutiu ML, Sinescu C, Draganescu G, Todea C, Dodenciu D, Rominu R (2008) Microspectral analysis with laser in microleakage evaluation between infrastructure and veneer materials in fixed partial dentures. Proc SPIE 6843:68430QCrossRefGoogle Scholar
  49. 49.
    Pecheva E, Petrov T, Lungu C, Montgomery P, Pramatarova L (2008) Stimulated in vitro bone-like apatite formation by a novel laser processing technique. Chem Eng J 137:144–153CrossRefGoogle Scholar
  50. 50.
    Thareja RK (2008) Spectroscopic investigations of carious tooth decay. Med Eng Phys 30:1143–1148PubMedCrossRefGoogle Scholar
  51. 51.
    Singh VK, Rai AK (2011) Potential of laser-induced breakdown spectroscopy for the rapid identification of carious teeth. Lasers Med Sci 26:307–315PubMedCrossRefGoogle Scholar
  52. 52.
    Collins K, Vass A (2003) Elemental characterization of skeletal remains using laser-induced breakdown spectroscopy (LIBS). Student Abstracts: Biology at ORNL. Workforce Development for Teachers and Scientists (WDTS), US Department of Energy. Accessed 15 Apr 2011
  53. 53.
    Niemz MH (1995) Evaluation of physical parameters during the plasma-induced ablation of teeth. Proc SPIE 2323:170CrossRefGoogle Scholar
  54. 54.
    Niemz MH (1994) Diagnosis of caries by spectral analysis of laser-induced plasma sparks. Proc SPIE 2327:56CrossRefGoogle Scholar
  55. 55.
    Bilmes GM, Freisztav C, Schinca D, Orsetti A (2005) Cleaning and characterization of objects of cultural value by laser ablation. Proc SPIE 5857:585704CrossRefGoogle Scholar
  56. 56.
    Tawfik W, El-Tayeb S (2006) Human enamel in ancient (3400–1085 BC) and recent Egypt. Sci Echoes 7:28–38Google Scholar
  57. 57.
    Abdel-Salam ZA, Galmed AH, Tognoni E, Harith MA (2007) Estimation of calcified tissues hardness via calcium and magnesium ionic to atomic line intensity ratio in laser induced breakdown spectra. Spectrochim Acta B 62:1343–1347CrossRefGoogle Scholar
  58. 58.
    Corsi M, Cristoforetti G, Hidalgo M, Legnaioli S, Palleschi V, Salvetti A, Tognoni E, Vallebona C (2003) Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis. Appl Opt 42:6133–6137PubMedCrossRefGoogle Scholar
  59. 59.
    Ohmi M, Nakamura M, Morimoto S, Haruna M (2000) Nanosecond time-gated spectroscopy of laser-ablation plume of human hair to detect calcium for potential diagnoses. Opt Rev 7:353–357CrossRefGoogle Scholar
  60. 60.
    Haruna M, Ohmi M, Nakamura M, Morimoto S (2000) Calcium detection of human hair and nail by the nanosecond time-gated spectroscopy of laser-ablation plume. Proc SPIE 3917:87CrossRefGoogle Scholar
  61. 61.
    Branch JW, Kumar A, Yueh FY, Singh JP (2005) Laser-induced breakdown spectroscopy: application to hair and nail. Pittcon 2005, Orlando, FL, pp 1190–1191Google Scholar
  62. 62.
    Hamzaoui S, Khleifia R, Jaidane N, Lakhdar ZB (2011) Quantitative analysis of pathological nails using laser-induced breakdown spectroscopy (LIBS) technique. Lasers Med Sci 26:79–83PubMedCrossRefGoogle Scholar
  63. 63.
    Pathak AK, Rai AK (2010) Principal component analysis of human nail using LIBS data. Asian J Spectros 147–151Google Scholar
  64. 64.
    Ng CW, Cheung NH (2000) Detection of sodium and potassium in single human red blood cells by 193-nm laser ablative sampling: a feasibility demonstration. Anal Chem 72:247–250PubMedCrossRefGoogle Scholar
  65. 65.
    Martin M, Evans B, O’Neill H, Woodward J (2003) Laser-induced breakdown spectroscopy used to detect palladium and silver metal dispersed in bacterial cellulose membranes. Appl Opt 42:6174–6178PubMedCrossRefGoogle Scholar
  66. 66.
    Samek O, Liska M, Kaiser J, Krzyzanek V, Beddows DCS, Belenkevitch A, Morris GW, Telle HH (1999) Laser ablation for mineral analysis in the human body: integration of LIFS with LIBS. Proc SPIE 3570:263CrossRefGoogle Scholar
  67. 67.
    Al-Jeffery MO, Telle HH (2002) LIBS and LIFS for rapid detection of Rb traces in blood. Proc SPIE 4613:152CrossRefGoogle Scholar
  68. 68.
    Rehse SJ, Diedrich J, Palchaudhuri S (2007) Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy. Spectrochim Acta B 62:1169–1176CrossRefGoogle Scholar
  69. 69.
    Wu J, Zhang W, Shao X, Lin Z, Liu X (2008) Simulated body fluid by laser-induced breakdown spectroscopy. Chin J Laser B 35:445–447CrossRefGoogle Scholar
  70. 70.
    Hofmann R, Hartung R, Schmidt-Kloiber H, Reichel E (1989) First clinical experience with a Q-switched Nd:YAG laser for urinary calculi. J Urol 141:275–279PubMedGoogle Scholar
  71. 71.
    Fang X, Ahmad SR, Mayo M, Iqbal S (2005) Elemental analysis of urinary calculi by laser-induced plasma spectroscopy. Lasers Med Sci 20:132–137PubMedCrossRefGoogle Scholar
  72. 72.
    Singh VK, Rai V, Rai AK (2009) Variational study of the constituents of cholesterol stones by laser-induced breakdown spectroscopy. Lasers Med Sci 24:27–33PubMedCrossRefGoogle Scholar
  73. 73.
    Singh VK, Singh V, Rai AK, Thakur SN, Rai PK, Singh JP (2008) Quantitative analysis of gallstones using laser-induced breakdown spectroscopy. Appl Opt 47:G38–G47PubMedCrossRefGoogle Scholar
  74. 74.
    Singh VK, Rai AK, Rai PK, Jindal PK (2009) Cross-sectional study of kidney stones by laser-induced breakdown spectroscopy. Lasers Med Sci 24:749–759PubMedCrossRefGoogle Scholar
  75. 75.
    Anzano J, Lasheras RJ (2009) Strategies for the identification of urinary calculus by laser induced breakdown spectroscopy. Talanta 79:352–360PubMedCrossRefGoogle Scholar
  76. 76.
    Pathak AK, Singh VK, Rai NK, Rai AK, Rai PK, Rai PK, Rai S, Baruah GD (2011) Study of different concentric rings inside gallstones with LIBS. Lasers Med Sci. doi:10.1007/s10103-011-0886-1 PubMedGoogle Scholar
  77. 77.
    Singh VK, Rai NK, Pandhija S, Rai AK, Rai PK (2009) Investigation of common Indian edible salts suitable for kidney disease by laser induced breakdown spectroscopy. Lasers Med Sci 24:917–924PubMedCrossRefGoogle Scholar
  78. 78.
    Martin MZ, Wullschleger SD, Garten CT, Palumbo AV, Smith JG (2005) Elemental analysis of environmental and biological samples using laser-induced breakdown spectroscopy and pulsed Raman spectroscopy. J Dispers Sci Technol 25:687–694CrossRefGoogle Scholar
  79. 79.
    Morel S, Leone N, Adam P, Amouroux J (2003) Detection of bacteria by time-resolved laser-induced breakdown spectroscopy. Appl Opt 42:6184–6191PubMedCrossRefGoogle Scholar
  80. 80.
    Samuels AC, DeLucia FC, McNesby KL, Miziolek AW (2003) Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens and proteins: initial studies of discrimination potential. Appl Opt 42:6205–6209PubMedCrossRefGoogle Scholar
  81. 81.
    Kim T, Specht ZG, Vary PS, Lin CT (2004) Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy. J Phys Chem B 108:5477–5482CrossRefGoogle Scholar
  82. 82.
    Hybl JD, Lithgow GA, Buckley SG (2003) Laser-induced breakdown spectroscopy detection of biological material. Appl Spectrosc 57:1207–1215PubMedCrossRefGoogle Scholar
  83. 83.
    Hybl JD, Tysk SM, Berry SR, Jordan MP (2006) Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection. Appl Opt 45:8806–8814PubMedCrossRefGoogle Scholar
  84. 84.
    Boyain-Goitia AR, Beddows DCS, Griffiths BG, Telle HH (2003) Single pollen analysis by laser-induced breakdown spectroscopy and Raman microscopy. Appl Opt 42:6119–6132PubMedCrossRefGoogle Scholar
  85. 85.
    Dixon PB, Hahn DW (2005) Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy. Anal Chem 77:631–638PubMedCrossRefGoogle Scholar
  86. 86.
    Beddows DCS, Telle HH (2005) Prospects of real-time single particle biological aerosol analysis: a comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry. Spectrochim Acta B 60:1040–1050CrossRefGoogle Scholar
  87. 87.
    Baudelet M, Guyon L, Yu J, Wolf JP, Amodeo T, Frejafon E, Laloi P (2006) Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy. Appl Phys Lett 88:063901CrossRefGoogle Scholar
  88. 88.
    Baudelet M, Guyon L, Yu J, Wolf JP, Fréjafon AE, Laloi P (2006) Femtosecond time resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime. J Appl Phys 99:084701CrossRefGoogle Scholar
  89. 89.
    Munson CA, De Lucia FC, Piehler T Jr, McNesby KL, Miziolek AW (2005) Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent stimulants. Spectrochim Acta B 60:1217–1224CrossRefGoogle Scholar
  90. 90.
    Gibb-Snyder E, Gullett B, Ryan S, Oudejans L, Touati A (2006) Development of size selective sampling of Bacillus anthracis surrogate spores from simulated building air intake mixtures for analysis via laser-induced breakdown spectroscopy. Appl Spectrosc 60:860–870PubMedCrossRefGoogle Scholar
  91. 91.
    Diedrich J, Rehse SJ, Palchaudhuri S (2007) Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy. J Appl Phys 102:014702CrossRefGoogle Scholar
  92. 92.
    Gottfried JL, De Lucia FC, Munson CA Jr, Miziolek AW (2008) Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy. Appl Spectrosc 62:353–363PubMedCrossRefGoogle Scholar
  93. 93.
    Baudelet M, Yu J, Bossu M, Jovelet J, Wolf JP, Amodeo T, Fréjafon E, Laloi P (2006) Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy. Appl Phys Lett 89:163903CrossRefGoogle Scholar
  94. 94.
    Xu HL, Liu W, Chin SL (2006) Remote time-resolved filament-induced breakdown spectroscopy of biological materials. Opt Lett 31:1540–1542PubMedCrossRefGoogle Scholar
  95. 95.
    Assion A, Wollenhaupt M, Haag L, Mayorov F, Tudoran CS, Winter M, Kutschera U, Baumert T (2003) Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution. Appl Phys B 77:391–397CrossRefGoogle Scholar
  96. 96.
    Xu HL, Méjean G, Liu W, Kamali Y, Daigle JF, Azarm A, Simard PT, Mathieu P, Roy G, Simard JR, Chin SL (2007) Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy. Appl Phys B 87:157–156CrossRefGoogle Scholar
  97. 97.
    Sperling MB, Welz B (1999) Atomic absorption spectrometry. Wiley-VCH, Weinheim, ISBN: 3-527-28571-7Google Scholar
  98. 98.
    Montaser A, Golightly DW (1992) Inductively coupled plasmas in analytical atomic spectrometry. VCH, New YorkGoogle Scholar
  99. 99.
    Gautier C, Fichet P, Menut D, Lacour JL, L’Hermite D, Dubessy J (2005) Quantification of the intensity enhancements for the double pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry. Spectrochim Acta B 60:265–276CrossRefGoogle Scholar
  100. 100.
    De Lucia FC, Harmon RS, McNesby KL, Winkel RJ, Miziolek AW (2003) Laser-induced breakdown of energetic materials. Appl Opt 42:6148–6152PubMedCrossRefGoogle Scholar
  101. 101.
    Portnov A, Rosenwaks S, Bar I (2003) Emission following laser-induced breakdown spectroscopy of organic compounds in ambient air. Appl Opt 42:2835–2842PubMedCrossRefGoogle Scholar
  102. 102.
    De Lucia Jr FC, Gottfried JL (2010) Characterization of a series of nitrogen-rich molecules using laser induced breakdown spectroscopy. Propellants Explos Pyrotech 35:268–277CrossRefGoogle Scholar
  103. 103.
    Pathak AK, Singh VK, Rai S, Rai NK, Rai PK, Rai PK, Rai AK (2009) Classification of gallstones by principal component analysis based on LIBS spectra. Proceedings of National Laser Symposium 2009, Indian Laser AssociationGoogle Scholar
  104. 104.
    Pathak AK, Rai S, Singh VK, Rai NK, Rai AK (2010) PCA of LIBS spectra to differentiate healthy and caries affected part of teeth sample. In: Emerging trends in laser and spectroscopy and applications. Allied, New Delhi, pp 279–286Google Scholar
  105. 105.
    Pandhija S, Rai AK (2009) In situ multielemental monitoring in coral skeleton by CF-LIBS. Appl Phys B 94:545–552CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2011

Authors and Affiliations

  1. 1.School of PhysicsShri Mata Vaishno Devi UniversityKatraIndia
  2. 2.Laser Spectroscopy Research Laboratory, Department of PhysicsUniversity of AllahabadAllahabadIndia

Personalised recommendations