Advertisement

Lasers in Medical Science

, Volume 26, Issue 5, pp 615–621 | Cite as

The effect of diode laser irradiation on dentin as a preventive measure against dental erosion: an in vitro study

  • Mary A. S. de-Melo
  • Vanara F. Passos
  • Jose J. Alves
  • Eduardo B. Barros
  • Sérgio L. Santiago
  • Lidiany K. A. RodriguesEmail author
Original Article

Abstract

Increasing rates of non-carious cervical lesions due to dental erosion, exposure of dentinal tubules, and hypersensitivity to environmental stimuli have led to the development of new prevention strategies. This study evaluated the effects of a low-intensity diode laser (λ = 808 nm) on the dentinal chemical composition and prevention of demineralization. In addition, the study monitored temperature changes during the course of irradiation. Forty dentin specimens were randomly allocated into four groups (n = 10): G1 – No treatment (control), G2 – irradiated with 15 J/cm2, G3 – irradiated with 30 J/cm2, and G4 – irradiated with 60 J/cm2. Each specimen was partially covered with nail varnish, treated according to the group irradiation levels, and exposed to an erosive challenge (1.0 M hydrochloric acid) for 5 min. Afterwards, dentin loss was profilometrically analyzed and examined by scanning electron microscopy (SEM) combined with energy dispersive X-ray (EDX). Intrapulpal temperatures were measured during the dentin irradiation. One-way ANOVA and Tukey tests (p < 0.05) were performed to assess differences. For all irradiated groups, intrapulpal temperature changes were less than 3°C. The G2 group showed statistically significant differences when compared to the other groups, representing the lowest temperature increase. A quantitative element analysis via EDX did not significantly differ (p < 0.05) for Ca, P, F, O, or C between the four groups when measured after irradiation/erosion. The mean wear rates (± SD, μm) were 35.66 ± 7.28; 40.70 ± 5.03; 38.17 ± 10.81 and 25.25 ± 6.87 for G1–G4, respectively. The G4 group statistically differed from all other groups representing the lowest wear rate. These results suggest that dentin irradiation, using a diode laser with levels set at 60 J/cm2, may induce inhibitory effects on root dentin demineralization without causing any harmful thermal effects. However, the exact mechanism of the action of the laser remains unclear.

Keywords

Erosion Diode laser Dentin Temperature 

Notes

Acknowledgments

The authors thank IPDI (Institute of Research, Development and Innovation) for the EDX measurements. This research was financially supported by Grant # 152.01.00/09 from the State of Ceará Research Foundation (FUNCAP).

References

  1. 1.
    Lussi A, Jaeggi T (2008) Erosion—diagnosis and risk factors. Clin Oral Invest 12(Suppl 1):5–13. doi: 10.1007/s00784-007-0179-z CrossRefGoogle Scholar
  2. 2.
    Abrahamsen TC (2005) The worn dentition – pathognomonic patterns of abrasion and erosion. Int Dent J 55:268–276PubMedGoogle Scholar
  3. 3.
    Gregory-Head BL, Curtis DA, Kim L, Cello J (2000) Evaluation of dental erosion in patients with gastroesophageal reflux disease. J Prost Dent 83(6):675–680. doi: 10.1067/mpr.2000.107193 CrossRefGoogle Scholar
  4. 4.
    Dynesen AW, Bardow A, Petersson B, Nielsen LR, Nauntofte B (2008) Salivary changes and dental erosion in bulimia nervosa. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106(5):696–707. doi: 10.1016/j.tripleo.2008.07.003 PubMedCrossRefGoogle Scholar
  5. 5.
    Bartlett DW (2005) The role of erosion in tooth wear: a etiology, prevention and management. Int Dent J 55:277–284. doi: 10.1177/154405910608500405 PubMedGoogle Scholar
  6. 6.
    Lussi A, Hellwig E, Zero D, Jaeggi T (2006) Erosive tooth wear: diagnosis, risk factors and prevention. Am J Dent 19(6):319–325PubMedGoogle Scholar
  7. 7.
    Magalhães AC, Wiegand A, Rios D, Honório HM, Buzalaf MAR (2009) Insights into preventive measures for dental erosion. J Appl Oral Sci 17(2):75–86PubMedCrossRefGoogle Scholar
  8. 8.
    Mellberg JR (1986) Demineralization and remineralization of root surface caries. Gerodontology 5(1):25–31. doi: 10.1111/j.1741-2358.1986.tb00380.x CrossRefGoogle Scholar
  9. 9.
    Wathen WF (1997) The dentulous, aging patient: what should we do? Quintessence Int 28(4):225PubMedGoogle Scholar
  10. 10.
    Shay K (2004) The evolving impact of aging America on dental practice. J Contemp Dent Pract 5(4):101–110PubMedGoogle Scholar
  11. 11.
    Al-Sabbagh M, Andreana S, Ciancio SG (2004) Dentinal hypersensitivity: review of aetiology, differential diagnosis, prevalence, and mechanism. J Int Acad Periodontol 6(1):8–12PubMedGoogle Scholar
  12. 12.
    Vieira AH, Santiago SL (2009) Management of dentinal hypersensitivity. Gen Dent 57(2):120–126PubMedGoogle Scholar
  13. 13.
    Bamise CT, Olusile AO, Oginni AO (2008) An analysis of the etiological and predisposing factors related to dentin hypersensitivity. J Contemp Dent Pract 9(5):52–59PubMedGoogle Scholar
  14. 14.
    Lussi A, Jaeggi T, Zero D (2004) The role of diet in the aetiology of dental erosion. Caries Res 38(1):34–44. doi: 10.1159/000074360 PubMedCrossRefGoogle Scholar
  15. 15.
    Borcic J, Anic I, Urek MM, Ferreri S (2004) The prevalence of non-carious cervical lesions in permanent dentition. J Oral Rehabil 31(2):117–123. doi: 10.1046/j.0305-182X.2003.01223.x PubMedCrossRefGoogle Scholar
  16. 16.
    Mahoney EK, Kilpatrick NM (2003) Dental erosion: Part 1. Aetiology and prevalence of dental erosion. N Z Dental J 99(2):33–41Google Scholar
  17. 17.
    Van Rijkom H, Ruben J, Vieira A, Huysmans MC, Truin GJ, Mulder J (2003) Erosion inhibiting effect of sodium fluoride and titanium tetrafluoride treatment in vitro. Eur J Oral Sci 111:253–257. doi: 10.1034/j.1600-0722.2003.00031.x PubMedCrossRefGoogle Scholar
  18. 18.
    Amaechi BT, Higham SM (2005) Dental erosion: possible approaches to prevention and control. J Dent 33(3):243–252. doi: 10.1016/j.jdent.2004.10.014 PubMedCrossRefGoogle Scholar
  19. 19.
    Lussi A (2009) Dental erosion—novel remineralizing agents in prevention or repair. Adv Dent Res 21:13–16. doi: 10.1177/0895937409335592 PubMedGoogle Scholar
  20. 20.
    Magalhães AC, Rios D, Machado MA, Da Silva SM, Lizarelli Rde F, Bagnato VS, Buzalaf MA (2008) Effect of Nd:YAG irradiation and fluoride application on dentin resistance to erosion in vitro. Photomed Laser Surg 26(6):559–563. doi: 10.1089/pho.2007.2231 PubMedCrossRefGoogle Scholar
  21. 21.
    Rios D, Magalhães AC, Machado MA, da Silva SM, Lizarelli Rde F, Bagnato VS, Buzalaf MA (2009) In vitro evaluation of enamel erosion after Nd:YAG laser irradiation and fluoride application. Photomed Laser Surg 27(5):743–747. doi: 10.1089/pho.2007.2231 PubMedCrossRefGoogle Scholar
  22. 22.
    Vlacic J, Meyers IA, Walsh LJ (2007) Laser-activated fluoride treatment of enamel as prevention against erosion. Aust Dent J 52(3):175–180. doi: 10.1111/j.1834-7819.2007.tb00485.x PubMedCrossRefGoogle Scholar
  23. 23.
    Vlacic J, Meyers I, Kim JA, Walsh LJ (2007) Laser-activated fluoride treatment of enamel against an artificial caries challenge: comparison of five wavelengths. Aust Dent J 52(2):101–105. doi: 10.1111/j.1834-7819.2007.tb00472.x PubMedCrossRefGoogle Scholar
  24. 24.
    Barone A, Aldini NN, Fini M, Giardino R, Calvo-Guirado JL, Covani U (2008) Xenograft versus extraction alone for ridge preservation after tooth removal: a clinical and histomorphometric study. J Periodont 79(8):1370–1377. doi: 10.1902/jop.2008.070628 PubMedCrossRefGoogle Scholar
  25. 25.
    Holbrook WP, Furuholm J, Gudmundsson K, Theodórs A, Meurman JH (2009) Gastric reflux is a significant causative factor of tooth erosion. J Dent Res 88(5):422–426. doi: 10.1177/0022034509336530 PubMedCrossRefGoogle Scholar
  26. 26.
    Nekrashevych Y, Stösser L (2003) Protective influence of experimentally formed salivary pellicle on enamel erosion. Caries Res 37:225–231. doi: 10.1159/000070449 PubMedCrossRefGoogle Scholar
  27. 27.
    Fackler WK, Vaezi MF, Richter JE (2001) Ambulatory gastric pH monitoring: proper probe placement and normal values. Aliment Pharmacol Ther 15(8):1155–1162. doi: 10.1046/j.1365-2036.2001.01011.x PubMedCrossRefGoogle Scholar
  28. 28.
    Lee BS, Lin YW, Chia JS, Hsieh TT, Chen MH, Lin PC, Lan WH (2006) Bactericidal effects of diode laser on Streptococcus mutans after irradiation through different thickness of dentin. Lasers Surg Med 38(1):62–69. doi: 10.1002/lsm.20279 PubMedCrossRefGoogle Scholar
  29. 29.
    de Paula DM, Melo MAS, Lima JPM, Nobre-dos-Santos M, Zanin ICJ, Rodrigues LKA (2010) In vitro assessment of thermal changes in human teeth during photodynamic antimicrobial chemotherapy performed with red light sources. Laser Phys 20(6):1475–1480. doi: 10.1134/S1054660X10110046 CrossRefGoogle Scholar
  30. 30.
    Yazici AR, Khanbodaghi A, Kugel GJ ((2007) Effects of an in-office bleaching system (ZOOM) on pulp chamber temperature in vitro. J Contemp Dent Pract 8:19–26PubMedGoogle Scholar
  31. 31.
    Walsh LJ (2003) The current status of laser applications in dentistry. Aust Dent J 48(3):146–155. doi: 10.1111/j.1834-7819.2003.tb00025.x PubMedCrossRefGoogle Scholar
  32. 32.
    Rodrigues LKA, Featherstone JDB, Nobre-dos-santos M (2006) In situ mineral loss inhibition by CO2 laser and fluoride. J Dent Res 85(7):617–621. doi: 10.1177/154405910608500707 PubMedCrossRefGoogle Scholar
  33. 33.
    Steiner-Oliveira C, Nobre-Dos-Santos M, Zero DT, Eckert G, Hara AT (2010) Effect of a pulsed CO2 laser and fluoride on the prevention of enamel and dentine erosion. Arch Oral Biol 55:123–127. doi: 10.1016/j.archoralbio.2009.11.010 CrossRefGoogle Scholar
  34. 34.
    Hara AT, Ando M, Cury JA, Serra MC, González-Cabezas C, Zero DT (2005) Influence of the organic matrix on root dentine erosion by citric acid. Caries Res 39(2):134–138. doi: 10.1159/000083159 PubMedCrossRefGoogle Scholar
  35. 35.
    Cate AR Ten (1998) Oral Histology: development, structure, and function, 5th edn. Mosby, LondonGoogle Scholar
  36. 36.
    Liu Y, Hsu CY (2007) Laser-induced compositional changes on enamel: A FT-Raman study. J Dent 35(3):226–230. doi: 10.1016/j.jdent.2006.08.006 PubMedCrossRefGoogle Scholar
  37. 37.
    Fleming S, Tawashi R (1977) Dissolution retardation of dental enamel with special reference to the protein matrix. Can J Pharmaceut Sci 12:55–59Google Scholar
  38. 38.
    Paula SS, Soares LES, Santo AME, Martin AA, Cavalli V, Liporoni PCS (2009) FT-Raman and energy dispersive X-ray fluorescence spectrometric analyses of enamel submitted to 38% hydrogen peroxide bleaching, an acidic beverage, and simulated brushing. Photomed Laser Surg 28(3):391–396. doi: 10.1089/pho.2008.2426 CrossRefGoogle Scholar
  39. 39.
    Norbert Gutknecht N, Franzen R, Meister J, Vanweersch L, Mir M (2005) Temperature evolution on human teeth root surface after diode laser assisted endodontic treatment. Lasers Med Sci 20(2):99–103. doi: 10.1007/s10103-005-0347-9 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2010

Authors and Affiliations

  • Mary A. S. de-Melo
    • 1
  • Vanara F. Passos
    • 1
  • Jose J. Alves
    • 2
  • Eduardo B. Barros
    • 2
  • Sérgio L. Santiago
    • 1
  • Lidiany K. A. Rodrigues
    • 1
    Email author
  1. 1.Faculty of Pharmacy, Dentistry and NursingFederal University of CearáFortalezaBrazil
  2. 2.Department of PhysicsFederal University of CearáFortalezaBrazil

Personalised recommendations