Lasers in Medical Science

, Volume 27, Issue 1, pp 141–144 | Cite as

Scanning electron microscopy study of cavity preparation in deciduous teeth using the Er:YAG laser with different powers

Original Article

Abstract

Using scanning electron microscopy (SEM) we evaluated the morphology of cavity surfaces in deciduous teeth prepared in vitro with the Er:YAG laser with different power parameters. Eight extracted cavity-free deciduous teeth with an intact crown were prepared using a traditional handpiece or an Er:YAG laser with different parameters (10 Hz/200 mJ, 10 Hz/300 mJ and 10 Hz/400 mJ). Samples were then processed and cavity surface morphology was evaluated by SEM to detect open dentinal tubules, or melting or cracking of the dentin. SEM showed that laser cavity preparation in deciduous teeth using different parameters left no smear layer and the dentinal tubules were clear. Dentin melting was not seen after cavity preparation at 200 mJ or 300 mJ, while visible dentin melting and cracks were detected at 400 mJ. The use of the laser at 10 Hz/200 mJ and 10 Hz/300 mJ for cavity preparation in deciduous teeth is safe and effective, but higher powers may damage the dentin.

Keywords

Er:YAG laser Deciduous teeth Dentin Scanning electron microscopy 

References

  1. 1.
    Cozean C, Arcoria CJ, Pelagalli J, Powell GL (1997) Dentistry for the 21st century? Erbium:YAG laser for teeth. J Am Dent Assoc 128:1080–1087PubMedGoogle Scholar
  2. 2.
    Pelagalli J, Gimbell CB, Hansen RT et al (1997) Investigational study of the use of Er:YAG laser versus dental drill for caries removal and cavity preparation – phase I. J Clin Laser Med Surg 15:109–115PubMedGoogle Scholar
  3. 3.
    Hossain M, Nakamura Y, Yamada Y, Kimura Y et al (1999) Ablation depths and morphological changes in human enamel and dentin after Er:YAG laser irradiation with or without water mist. J Clin Laser Med Surg 17:105–109PubMedGoogle Scholar
  4. 4.
    Camerlingo C, Lepore M, Gaeta GM, Riccio R, Riccio C, De Rosa A et al (2004) Er:YAG laser treatments on dentine surface: micro-Raman spectroscopy and SEM analysis. J Dent 32:399–405PubMedCrossRefGoogle Scholar
  5. 5.
    Khabbaz MG, Makropoulou MI, Serafetinides AA et al (2004) SEM analysis of dentin treated with the Er:YAG laser. J Endod 30(8):585–588PubMedCrossRefGoogle Scholar
  6. 6.
    Freitas PM, Navarro RS, Barros JA et al (2007) The use of Er:YAG laser for cavity preparation: an SEM evaluation. Microsc Res Tech 70:803–808PubMedCrossRefGoogle Scholar
  7. 7.
    Israel M, Cobb CM, Rossmann JA et al (1997) The effects of CO2, Nd:YAG and Er:YAG lasers with and without surface coolant on tooth root surfaces. An in vitro study. J Clin Periodontol 24:595–602PubMedCrossRefGoogle Scholar
  8. 8.
    Sassi JF, Chimello DT, Borsatto MC et al (2004) Comparative study of the dentin/adhesive systems interface after treatment with Er:YAG laser and acid etching using scanning electron microscope. Lasers Surg Med 34:385–390PubMedCrossRefGoogle Scholar
  9. 9.
    Kohara EK, Hossain M, Kimura Y, Matsumoto K, Inoue M, Sasa R (2002) Morphological and microleakage studies of the cavities prepared by Er:YAG laser irradiation in primary teeth. J Clin Laser Med Surg 20:141–147PubMedCrossRefGoogle Scholar
  10. 10.
    Kornblit R, Bossù M, Mari D et al (2009) Enamel and dentine of deciduous teeth Er:YAG laser prepared. A SEM study. Eur J Paediatr Dent 10(2):75–82PubMedGoogle Scholar
  11. 11.
    Pashley DH, Tao L, Boyd L et al (1988) Scanning electron microscopy of the substructure of smear layers in human dentin. Arch Oral Biol 33(4):265–270PubMedCrossRefGoogle Scholar
  12. 12.
    Yu XY, Davis EL, Joynt RB et al (1992) Origination and progression of microleakage in a restoration with a smear layer-mediated dentinal bonding agent. Quintessence Int 23(8):551–555PubMedGoogle Scholar
  13. 13.
    Vassiliadis L, Liolios E, Kouvas V et al (1996) Effect of smear layer on coronal microleakage. Oral Med Oral Pathol Oral Radiol Endod 82(3):315–320CrossRefGoogle Scholar
  14. 14.
    Hayakawa T, Nemoto K, Horie K (1995) Adhesion of composite to polished dentin retaining its smear layer. Dent Mater 11(3):218–222PubMedCrossRefGoogle Scholar
  15. 15.
    Gettleman BH, Messe HH, Deeb M (1991) Adhesion of sealer cements to dentin with and without the smear layer. J Endod 17(1):15–20PubMedCrossRefGoogle Scholar
  16. 16.
    Tokonabe H (1999) Morphological changes of human teeth with Er:YAG laser Irradiation. J Clin Laser Med Surg 17(1):7–12PubMedGoogle Scholar
  17. 17.
    Takamori K (2003) Basic study on vibrations during tooth preparations caused by high-speed drilling and Er:YAG laser irradiation. Lasers Surg Med 32:25–31PubMedCrossRefGoogle Scholar
  18. 18.
    Armengol V, Jean A, Rohanizadeh R et al (1999) Erbium laser ablation of dental hard tissue: effect of water cooling. J Endod 25(8):543–546PubMedCrossRefGoogle Scholar
  19. 19.
    Esteves-Oliveira M, de Guglielmi CA, Ramalho KM et al (2010) Comparison of dentin root canal permeability and morphology after irradiation with Nd:YAG, Er:YAG, and diode lasers. Lasers Med Sci 25:755–760PubMedCrossRefGoogle Scholar
  20. 20.
    Delme KI, De Moor RJ (2007) Scanning electron microscopic evaluation of enamel and dentin surfaces after Er:YAG laser preparation and laser conditioning. Photomed Laser Surg 25(5):393–401PubMedCrossRefGoogle Scholar
  21. 21.
    Corona SA, Souza-Gabriel AE, Chinelatti MA et al (2008) Influence of energy and pulse repetition rate of Er:YAG laser on enamel ablation ability and morphological analysis of the laser-irradiated surface. J Biomed Mater Res A 84(3):569–575PubMedGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2010

Authors and Affiliations

  1. 1.Department of Pediatric Dentistry, School of StomatologyPeking UniversityBeijingChina
  2. 2.Tian Jin stomatological HospitalPeking UniversityTian JinChina

Personalised recommendations