Lasers in Medical Science

, Volume 26, Issue 3, pp 335–340 | Cite as

Effects of low-level laser therapy on expression of TNF-α and TGF-β in skeletal muscle during the repair process

  • Raquel Agnelli Mesquita-Ferrari
  • Manoela Domingues Martins
  • Jose Antônio SilvaJr.
  • Tatiana Dias da Silva
  • Roberto Farina Piovesan
  • Vanessa Christina Santos Pavesi
  • Sandra Kalil Bussadori
  • Kristianne Porta Santos Fernandes
Original Article

Abstract

The aim of the present study was to determine the effect of low-level laser therapy (LLLT) on the expression of TNF-α and TGF-β in the tibialis anterior muscle of rats following cryoinjury. Muscle regeneration involves cell proliferation, migration and differentiation and is regulated by growth factors and cytokines. A growing body of evidence suggests that LLLT promotes skeletal muscle regeneration by reducing the duration of acute inflammation and accelerating tissue repair. Adult male Wistar rats (n = 35) were randomly divided into three groups: control group (no lesion, untreated, n = 5), cryoinjury without LLLT group (n = 15), and cryoinjury with LLLT group (n = 15). The injured region was irradiated three times a week using an AlGaInP laser (660 nm; beam spot 0.04 cm2, output power 20 mW, power density 500 mW/cm2, energy density 5 J/cm2, exposure time 10 s). Muscle remodeling was evaluated at 1, 7 and 14 days (long-term) following injury. The muscles were removed and total RNA was isolated using TRIzol reagent and cDNA synthesis. Real-time polymerase chain reactions were performed using TNF-α and TGF-β primers; GAPDH was used to normalize the data. LLLT caused a decrease in TNF-α mRNA expression at 1 and 7 days following injury and in TGF-β mRNA expression at 7 days following cryoinjury in comparison to the control group. LLLT modulated cytokine expression during short-term muscle remodeling, inducing a decrease in TNF-α and TGF-β.

Keywords

Laser Low-level laser therapy Myoblasts TNF-α TGF-β 

Notes

Acknowledgements

The authors would like to thank UNINOVE for financial support.

Conflicts of interest

The authors declare that there were no conflicting financial interests.

References

  1. 1.
    Lopes-Martins RA, Marcos RL, Leonardo PS et al (2006) Effect of low-level laser (Ga-Al-As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J Appl Physiol 101:283–288PubMedCrossRefGoogle Scholar
  2. 2.
    Grounds MD, White JD, Rosenthal N, Bogoyevitch MA (2002) The role of stem cells in skeletal and cardiac muscle repair. J Histochem Cytochem 50:589–610PubMedGoogle Scholar
  3. 3.
    Fisher BD, Rathgaber M (2006) Denervation does not change the ratio of collagen I and collagen III mRNA in the extracellular matrix of muscle. J Phys Ther Sci 18(1):57–66CrossRefGoogle Scholar
  4. 4.
    Huard J, Li Y, Fu FH (2002) Muscle injuries and repair: current trends in research. J Bone Joint Surg Am 84:822–832PubMedGoogle Scholar
  5. 5.
    Araújo FA, Rocha MA, Mendes JB, Andrade SP (2010) Atorvastatin inhibits inflammatory angiogenesis in mice through down regulation of VEGF, TNF-a and TGF-b1. Biomed Pharmacother 64:29–34PubMedCrossRefGoogle Scholar
  6. 6.
    Filippin LI, Moreira AJ, Marroni NP, Xavier RM (2009) Nitric oxide and repair of skeletal muscle injury. Nitric Oxide 21:157–163PubMedCrossRefGoogle Scholar
  7. 7.
    Pereira MC, Pinho CB, Medrado ARP, Andrade ZA, Reis SRA (2010) Influence of 670 nm low-level laser therapy on mast cells and vascular response of cutaneous injuries. J Photochem Photobiol B Biol 98:188–192CrossRefGoogle Scholar
  8. 8.
    Herbein G, O'Brien WA (2000) Tumor necrosis factor (TNF)-alpha and TNF receptors in viral pathogenesis. Proc Soc Exp Biol Med 223(3):241–257PubMedCrossRefGoogle Scholar
  9. 9.
    Riedel K, Riedel F, Goessler UR, Germann G, Sauerbier M (2007) TGF-beta antisense therapy increases angiogenic potential in human keratinocytes in vitro. Arch Med Res 38(1):45–51PubMedCrossRefGoogle Scholar
  10. 10.
    Chargé SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84(1):209–238PubMedCrossRefGoogle Scholar
  11. 11.
    Kollias HD, McDermott JC (2008) Transforming growth factor-β and myostatin signaling in skeletal muscle. J Appl Physiol 104:579–587PubMedCrossRefGoogle Scholar
  12. 12.
    Moreira MS, Velasco IT, Ferreira LS, Ariga SKK, Barbeiro DF, Meneguzzo DT, Abatepaulo F, Marques MM (2009) Effect of phototherapy with low intensity laser on local and systemic immunomodulation following focal brain damage in rat. J Photochem Photobiol B 97:145–151PubMedCrossRefGoogle Scholar
  13. 13.
    Silveira PCL, Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R (2009) Evaluation of mitochondrial respiratory chain activity in muscle healing. by low-level laser therapy. J Photochem Photobiol B 95:89–92PubMedCrossRefGoogle Scholar
  14. 14.
    Medrado ARAP, Pugliese LS, Reis SRA, Andrade ZA (2003) Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Lasers Surg Med 32:239–244PubMedCrossRefGoogle Scholar
  15. 15.
    Shefer G, Barash I, Oron U, Halevy O (2003) Low-energy laser irradiation enhances de novo protein synthesis via its effects on translation-regulatory proteins in skeletal muscle myoblasts. Biochim Biophys Acta 1593:131–139PubMedCrossRefGoogle Scholar
  16. 16.
    Miyabara EH, Aoki MS, Soares AG, Moriscot AS (2005) Expression of tropism-related genes in regenerating skeletal muscle of rats treated with cyclosporin-A. Cell Tissue Res 319(3):479–489PubMedCrossRefGoogle Scholar
  17. 17.
    Rantanen J, Thorsson O, Wollmer P, Hurme T, Kalimo H (1999) Effects of therapeutic ultrasound on the regeneration of skeletal myofibers after experimental muscle injury. Am J Sports Med 27(1):54–59PubMedGoogle Scholar
  18. 18.
    Freitas LS, Freitas TP, Silveira PC, Rocha LG, Pinho RA, Streck EL (2007) Effect of therapeutic pulsed ultrasound on parameters of oxidative stress in skeletal muscle after injury. Cell Biol Int 31:482–488PubMedCrossRefGoogle Scholar
  19. 19.
    Kjaer M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 84:649–698PubMedCrossRefGoogle Scholar
  20. 20.
    Carmeli E, Moas M, Reznick AZ, Coleman R (2004) Matrix metalloproteinases and skeletal muscle: a brief review. Muscle Nerve 29(2):191–197PubMedCrossRefGoogle Scholar
  21. 21.
    Langen RCJ, Schols AMWJ, Kelders MCJM, Van Der Velden JL, Wouters EFM, Janssen-Heininger YMW (2006) Muscle wasting and impaired muscle regeneration in a murine model of chronic pulmonary inflammation. Am J Respir Cell Mol Biol 35:689–696PubMedCrossRefGoogle Scholar
  22. 22.
    Langen RC, Schols AM, Kelders MC, Wouters EF, Janssen-Heininger YM (2004) Tumor necrosis factor-alpha inhibits myogenic differentiation through MyoD protein destabilization. FASEB J 18:227–237PubMedCrossRefGoogle Scholar
  23. 23.
    Langen RC, Schols AM, Kelders MC, Wouters EF, Janssen-Heininger YM (2001) Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-kappaB. FASEB J 15:1169–1180PubMedCrossRefGoogle Scholar
  24. 24.
    Shi X, Garry DJ (2006) Muscle stem cells in development, regeneration, and disease. Genes Dev 20:1692–1708PubMedCrossRefGoogle Scholar
  25. 25.
    Lima FM, Costa MS, Albertini R, Silva JA Jr, Aimbire F (2009) Low level laser therapy (LLLT): attenuation of cholinergic hyperreactivity, b2-adrenergic hyporesponsiveness and TNF-a mRNA expression in rat bronchi segments in E. coli lipopolysaccharide-induced airway inflammation by a NF-kB dependent mechanism. Lasers Surg Med 41:68–74CrossRefGoogle Scholar
  26. 26.
    Albertini R, Villaverde AB, Aimbire F, Bjordal J, Brugnera A, Mittmann J, Silva JA, Costa M (2008) Cytokine mRNA expression is decreased in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation after low-level laser therapy. Photomed Laser Surg 26(1):19–24PubMedCrossRefGoogle Scholar
  27. 27.
    Bernasconi P, Di Blasi C, Mora M, Morandi L, Galbiati S, Confalonieri P et al (1999) Transforming growth factor-beta1 and fibrosis in congenital muscular dystrophies. Neuromuscul Disord 9:28–33PubMedCrossRefGoogle Scholar
  28. 28.
    Fukushima K, Badlani N, Usas A, Riano F, Fu FH, Huard J (2001) The use of an antifibrosis agent to improve muscle recovery after laceration. Am J Sports Med 29:394–402PubMedGoogle Scholar
  29. 29.
    Li Y, Foster W, Deasy BM et al (2004) Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol 164:1007–1019PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2010

Authors and Affiliations

  • Raquel Agnelli Mesquita-Ferrari
    • 1
  • Manoela Domingues Martins
    • 2
  • Jose Antônio SilvaJr.
    • 1
  • Tatiana Dias da Silva
    • 3
  • Roberto Farina Piovesan
    • 3
  • Vanessa Christina Santos Pavesi
    • 4
  • Sandra Kalil Bussadori
    • 1
  • Kristianne Porta Santos Fernandes
    • 1
  1. 1.Departamento de Pós Graduação, Mestrado em Ciências da ReabilitaçãoUniversidade Nove de Julho – UNINOVESão PauloBrazil
  2. 2.Dentistry SchoolUniversidade Federal do Rio Grande do Sul-UFRGSSão PauloBrazil
  3. 3.Departamento de Pos Graduacao, Mestrado em Ciencias da ReabilitacaoSão PauloBrazil
  4. 4.Dentistry SchoolUniversidade Nove de Julho – UNINOVESão PauloBrazil

Personalised recommendations