Lasers in Medical Science

, Volume 25, Issue 6, pp 781–792 | Cite as

Laser phototherapy in the treatment of periodontal disease. A review

  • Carlos de Paula Eduardo
  • Patricia Moreira de Freitas
  • Marcella Esteves-Oliveira
  • Ana Cecília Corrêa Aranha
  • Karen Müller Ramalho
  • Alyne Simões
  • Marina Stella Bello-Silva
  • Jan Tunér
Review Article


Many studies in the literature address the effect of low-power lasers in the management of pathologies related to periodontal tissues. Due to the lack of standardized information and the absence of a consensus, this review presents the current status of laser phototherapy (LPT) in periodontics and discusses its benefits and limits in the treatment of periodontal disease. The literature was searched for reviews and original research articles relating to LPT and periodontal disease. The articles were selected using either electronic search engines or manual tracing of the references cited in key papers. The literature search retrieved references on wound and bone healing, analgesia, hypersensitivity, inflammatory process and antimicrobial photodynamic therapy. Each topic is individually addressed in this review. The current literature suggests that LPT is effective in modulating different periodontal disease aspects in vitro, in animals, and in simple clinical models. Further development of this therapy is now dependent on new clinical trials with more complex study designs.


Low-power laser Photodynamic therapy Phototherapy Periodontal disease 



The authors wish to express their gratitude to the Special Laboratory of Lasers in Dentistry (LELO), University of São Paulo (Brazil), and to CNPq (303798/2005-0 and 305574/2008-6) and FAPESP (CEPID – 98/14270-8) for financial support.


  1. 1.
    Ishikawa I, Sasaki KM, Aoki A, Watanabe H (2003) Effects of Er:YAG laser on periodontal therapy. J Int Acad Periodontol 5(1):23–28PubMedGoogle Scholar
  2. 2.
    Bjordal JM, Johnson MI, Iversen V, Aimbire F, Lopes-Martins RA (2006) Photoradiation in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed Laser Surg 24(2):158–168. doi: 10.1089/pho.2006.24.158 PubMedCrossRefGoogle Scholar
  3. 3.
    Choi BK, Moon SY, Cha JH, Kim KW, Yoo YJ (2005) Prostaglandin E(2) is a main mediator in receptor activator of nuclear factor-kappaB ligand-dependent osteoclastogenesis induced by Porphyromonas gingivalis, Treponema denticola, and Treponema socranskii. J Periodontol 76(5):813–820. doi: 10.1902/jop.2005.76.5.813 PubMedCrossRefGoogle Scholar
  4. 4.
    Groth EB (1995) Treatment of dentin hypersensitivity with low power laser of GaAlAs (abstract). J Dent Res 74(3):794Google Scholar
  5. 5.
    Kimura Y, Wilder-Smith P, Yonaga K, Matsumoto K (2000) Treatment of dentine hypersensitivity by lasers: a review. J Clin Periodontol 27(10):715–721PubMedCrossRefGoogle Scholar
  6. 6.
    Kreisler M, Christoffers AB, Willershausen B, d'Hoedt B (2003) Effect of low-level GaAlAs laser irradiation on the proliferation rate of human periodontal ligament fibroblasts: an in vitro study. J Clin Periodontol 30(4):353–358PubMedCrossRefGoogle Scholar
  7. 7.
    Parker J, Dowdy D, Harkness E (2000) The effects of laser therapy on tissue repair and pain control. A meta analysis of the literature (abstract). Proceedings of the Third Congress of the World Association for Laser Therapy, Athens, Greece, p 77Google Scholar
  8. 8.
    Qadri T, Miranda L, Tuner J, Gustafsson A (2005) The short-term effects of low-level lasers as adjunct therapy in the treatment of periodontal inflammation. J Clin Periodontol 32(7):714–719. doi: 10.1111/j.1600-051X.2005.00749.x PubMedCrossRefGoogle Scholar
  9. 9.
    Weber JB, Pinheiro AL, de Oliveira MG, Oliveira FA, Ramalho LM (2006) Laser therapy improves healing of bone defects submitted to autologous bone graft. Photomed Laser Surg 24(1):38–44. doi: 10.1089/pho.2006.24.38 PubMedCrossRefGoogle Scholar
  10. 10.
    Yilmaz S, Kuru B, Kuru L, Noyan U, Argun D, Kadir T (2002) Effect of gallium arsenide diode laser on human periodontal disease: a microbiological and clinical study. Lasers Surg Med 30(1):60–66. doi: 10.1002/lsm.10010 PubMedCrossRefGoogle Scholar
  11. 11.
    Chan Y, Lai CH (2003) Bactericidal effects of different laser wavelengths on periodontopathic germs in photodynamic therapy. Lasers Med Sci 18(1):51–55. doi: 10.1007/s10103-002-0243-5 PubMedCrossRefGoogle Scholar
  12. 12.
    Qin YL, Luan XL, Bi LJ, Sheng YQ, Zhou CN, Zhang ZG (2008) Comparison of toluidine blue-mediated photodynamic therapy and conventional scaling treatment for periodontitis in rats. J Periodontal Res 43(2):162–167. doi: 10.1111/j.1600-0765.2007.01007.x PubMedCrossRefGoogle Scholar
  13. 13.
    O'Neill JF, Hope CK, Wilson M (2002) Oral bacteria in multi-species biofilms can be killed by red light in the presence of toluidine blue. Lasers Surg Med 31(2):86–90. doi: 10.1002/lsm.10087 PubMedCrossRefGoogle Scholar
  14. 14.
    Lanzafame RJ, Stadler I, Coleman J, Haerum B, Oskoui P, Whittaker M, Zhang RY (2004) Temperature-controlled 830-nm low-level laser therapy of experimental pressure ulcers. Photomed Laser Surg 22(6):483–488. doi: 10.1089/pho.2004.22.483 PubMedCrossRefGoogle Scholar
  15. 15.
    Crespi R, Romanos GE, Barone A, Sculean A, Covani U (2005) Er:YAG laser in defocused mode for scaling of periodontally involved root surfaces: an in vitro pilot study. J Periodontol 76(5):686–690. doi: 10.1902/jop.2005.76.5.686 PubMedCrossRefGoogle Scholar
  16. 16.
    Amorim JC, de Sousa GR, de Barros Silveira L, Prates RA, Pinotti M, Ribeiro MS (2006) Clinical study of the gingiva healing after gingivectomy and low-level laser therapy. Photomed Laser Surg 24(5):588–594. doi: 10.1089/pho.2006.24.588 PubMedCrossRefGoogle Scholar
  17. 17.
    Sakurai Y, Yamaguchi M, Abiko Y (2000) Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts. Eur J Oral Sci 108(1):29–34PubMedCrossRefGoogle Scholar
  18. 18.
    Ozawa Y, Shimizu N, Abiko Y (1997) Low-energy diode laser irradiation reduced plasminogen activator activity in human periodontal ligament cells. Lasers Surg Med 21(5):456–463PubMedCrossRefGoogle Scholar
  19. 19.
    Saygun I, Karacay S, Serdar M, Ural AU, Sencimen M, Kurtis B (2008) Effects of laser irradiation on the release of basic fibroblast growth factor (bFGF), insulin like growth factor-1 (IGF-1), and receptor of IGF-1 (IGFBP3) from gingival fibroblasts. Lasers Med Sci 23(2):211–215. doi: 10.1007/s10103-007-0477-3 PubMedCrossRefGoogle Scholar
  20. 20.
    Tunér J, Hode L (1998) It's all in the parameters: a critical analysis of some well-known negative studies on low-level laser therapy. J Clin Laser Med Surg 16(5):245–248PubMedGoogle Scholar
  21. 21.
    Qadri T, Bohdanecka P, Tuner J, Miranda L, Altamash M, Gustafsson A (2007) The importance of coherence length in laser phototherapy of gingival inflammation: a pilot study. Lasers Med Sci 22(4):245–251. doi: 10.1007/s10103-006-0439-1 PubMedCrossRefGoogle Scholar
  22. 22.
    Pejcic A, Zivkvic V (2007) Histological examination of gingiva treated with low-level laser in periodontal therapy. J Oral Laser Appl 71(1):37–43Google Scholar
  23. 23.
    Ribeiro IW, Sbrana MC, Esper LA, Almeida AL (2008) Evaluation of the effect of the GaAlAs laser on subgingival scaling and root planing. Photomed Laser Surg 26(4):387–391. doi: 10.1089/pho.2007.2152 PubMedCrossRefGoogle Scholar
  24. 24.
    Shimizu N, Yamaguchi M, Goseki T, Shibata Y, Takiguchi H, Iwasawa T, Abiko Y (1995) Inhibition of prostaglandin e2 and interleukin 1-beta production by low-power laser irradiation in stretched human periodontal ligament cells. J Dent Res 74(7):1382–1388PubMedCrossRefGoogle Scholar
  25. 25.
    Nomura K, Yamaguchi M, Abiko Y (2001) Inhibition of interleukin-1beta production and gene expression in human gingival fibroblasts by low-energy laser irradiation. Lasers Med Sci 16(3):218–223PubMedCrossRefGoogle Scholar
  26. 26.
    Safavi SM, Kazemi B, Esmaeili M, Fallah A, Modarresi A, Mir M (2008) Effects of low-level He-Ne laser irradiation on the gene expression of IL-1beta, TNF-alpha, IFN-gamma, TGF-beta, bFGF, and PDGF in rat's gingiva. Lasers Med Sci 23(3):331–335. doi: 10.1007/s10103-007-0491-5 PubMedCrossRefGoogle Scholar
  27. 27.
    Pejcic A, Kojovic D, Kesic L, Obradovic R (2010) The effects of low level laser irradiation on gingival inflammation. Photomed Laser Surg 28 (1):69–74. doi: 10.1089/pho.2008.2301 PubMedCrossRefGoogle Scholar
  28. 28.
    Grzesik WJ, Narayanan AS (2002) Cementum and periodontal wound healing and regeneration. Crit Rev Oral Biol Med 13(6):474–484PubMedCrossRefGoogle Scholar
  29. 29.
    Pitaru S, McCulloch CA, Narayanan SA (1994) Cellular origins and differentiation control mechanisms during periodontal development and wound healing. J Periodontal Res 29(2):81–94PubMedCrossRefGoogle Scholar
  30. 30.
    Loevschall H, Arenholt-Bindslev D (1994) Effect of low level diode laser irradiation of human oral mucosa fibroblasts in vitro. Lasers Surg Med 14(4):347–354PubMedCrossRefGoogle Scholar
  31. 31.
    Yu W, Naim JO, Lanzafame RJ (1994) The effect of laser irradiation on the release of bFGF from 3T3 fibroblasts. Photochem Photobiol 59(2):167–170PubMedCrossRefGoogle Scholar
  32. 32.
    Almeida-Lopes L, Rigau J, Zangaro RA, Guidugli-Neto J, Jaeger MM (2001) Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29(2):179–184. doi: 10.1002/lsm.1107 PubMedCrossRefGoogle Scholar
  33. 33.
    Pereira AN, Eduardo Cde P, Matson E, Marques MM (2002) Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Lasers Surg Med 31(4):263–267. doi: 10.1002/lsm.10107 PubMedCrossRefGoogle Scholar
  34. 34.
    Azevedo LH, de Paula Eduardo F, Moreira MS, de Paula Eduardo C, Marques MM (2006) Influence of different power densities of LILT on cultured human fibroblast growth: a pilot study. Lasers Med Sci 21(2):86–89. doi: 10.1007/s10103-006-0379-9 PubMedCrossRefGoogle Scholar
  35. 35.
    Moore P, Ridgway TD, Higbee RG, Howard EW, Lucroy MD (2005) Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro. Lasers Surg Med 36(1):8–12. doi: 10.1002/lsm.20117 PubMedCrossRefGoogle Scholar
  36. 36.
    Kreisler M, Christoffers AB, Al-Haj H, Willershausen B, d'Hoedt B (2002) Low level 809-nm diode laser-induced in vitro stimulation of the proliferation of human gingival fibroblasts. Lasers Surg Med 30(5):365–369. doi: 10.1002/lsm.10060 PubMedCrossRefGoogle Scholar
  37. 37.
    Khadra M, Lyngstadaas SP, Haanaes HR, Mustafa K (2005) Determining optimal dose of laser therapy for attachment and proliferation of human oral fibroblasts cultured on titanium implant material. J Biomed Mater Res A 73(1):55–62. doi: 10.1002/jbm.a.30270 PubMedGoogle Scholar
  38. 38.
    Pourzarandian A, Watanabe H, Ruwanpura SM, Aoki A, Ishikawa I (2005) Effect of low-level Er:YAG laser irradiation on cultured human gingival fibroblasts. J Periodontol 76(2):187–193. doi: 10.1902/jop.2005.76.2.187 PubMedCrossRefGoogle Scholar
  39. 39.
    Lubart R, Wollman Y, Friedmann H, Rochkind S, Laulicht I (1992) Effects of visible and near-infrared lasers on cell cultures. J Photochem Photobiol B 12(3):305–310. doi: 1011-1344(92)85032-P PubMedCrossRefGoogle Scholar
  40. 40.
    Karu TI (1990) Effects of visible radiation on cultured cells. Photochem Photobiol 52(6):1089–1098PubMedCrossRefGoogle Scholar
  41. 41.
    van Breugel HH, Bar PR (1992) Power density and exposure time of He-Ne laser irradiation are more important than total energy dose in photo-biomodulation of human fibroblasts in vitro. Lasers Surg Med 12(5):528–537PubMedCrossRefGoogle Scholar
  42. 42.
    Marques MM, Pereira AN, Fujihara NA, Nogueira FN, Eduardo CP (2004) Effect of low-power laser irradiation on protein synthesis and ultrastructure of human gingival fibroblasts. Lasers Surg Med 34(3):260–265. doi: 10.1002/lsm.20008 PubMedCrossRefGoogle Scholar
  43. 43.
    Ozcelik O, Cenk Haytac M, Kunin A, Seydaoglu G (2008) Improved wound healing by low-level laser irradiation after gingivectomy operations: a controlled clinical pilot study. J Clin Periodontol 35(3):250–254. doi: 10.1111/j.1600-051X.2007.01194.x PubMedCrossRefGoogle Scholar
  44. 44.
    Ozcelik O, Cenk Haytac M, Seydaoglu G (2008) Enamel matrix derivative and low-level laser therapy in the treatment of intra-bony defects: a randomized placebo-controlled clinical trial. J Clin Periodontol 35(2):147–156. doi: 10.1111/j.1600-051X.2007.01176.x PubMedCrossRefGoogle Scholar
  45. 45.
    Damante CA, Greghi SL, Sant'Ana AC, Passanezi E, Taga R (2004) Histomorphometric study of the healing of human oral mucosa after gingivoplasty and low-level laser therapy. Lasers Surg Med 35(5):377–384. doi: 10.1002/lsm.20111 PubMedCrossRefGoogle Scholar
  46. 46.
    Karu T, Kalenko GS, Letokhov VS, Lobko VV (1982) Biological action of low-intensity visible light on HeLa cells as a function of the coherence, dose, wavelength, and irradiation regime. Sov J Quantum Electron 12(9):1134–1138CrossRefGoogle Scholar
  47. 47.
    Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Gomes Massironi SM, Pereira LV, Caplan AI, Cerruti HF (2006) Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs 184(3–4):105–116. doi: 10.1159/000099617 PubMedCrossRefGoogle Scholar
  48. 48.
    Tuby H, Maltz L, Oron U (2007) Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med 39(4):373–378. doi: 10.1002/lsm.20492 PubMedCrossRefGoogle Scholar
  49. 49.
    Vieira NM, Brandalise V, Zucconi E, Jazedje T, Secco M, Nunes VA, Strauss BE, Vainzof M, Zatz M (2008) Human multipotent adipose-derived stem cells restore dystrophin expression of Duchenne skeletal-muscle cells in vitro. Biol Cell 100(4):231–241. doi: 10.1042/BC20070102 PubMedCrossRefGoogle Scholar
  50. 50.
    Eduardo Fde P, Bueno DF, de Freitas PM, Marques MM, Passos-Bueno MR, Eduardo Cde P, Zatz M (2008) Stem cell proliferation under low intensity laser irradiation: A preliminary study. Lasers Surg Med 40(6):433–438. doi: 10.1002/lsm.20646 PubMedCrossRefGoogle Scholar
  51. 51.
    Soares LP, Oliveira MG, Pinheiro AL, Fronza BR, Maciel ME (2008) Effects of laser therapy on experimental wound healing using oxidized regenerated cellulose hemostat. Photomed Laser Surg 26(1):10–13. doi: 10.1089/pho.2007.2115 PubMedCrossRefGoogle Scholar
  52. 52.
    Torres CS, dos Santos JN, Monteiro JS, Amorim PG, Pinheiro AL (2008) Does the use of laser photobiomodulation, bone morphogenetic proteins, and guided bone regeneration improve the outcome of autologous bone grafts? An in vivo study in a rodent model. Photomed Laser Surg 26(4):371–377. doi: 10.1089/pho.2007.2172 PubMedCrossRefGoogle Scholar
  53. 53.
    Sculean A, Nikolidakis D, Schwarz F (2008) Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials – biological foundation and preclinical evidence: a systematic review. J Clin Periodontol 35(8 Suppl):106–116. doi: 10.1111/j.1600-051X.2008.01263.x PubMedCrossRefGoogle Scholar
  54. 54.
    Aboelsaad NS, Soory M, Gadalla LM, Ragab LI, Dunne S, Zalata KR, Louca C (2009) Effect of soft laser and bioactive glass on bone regeneration in the treatment of infra-bony defects (a clinical study). Lasers Med Sci 24(4):527–533. doi: 10.1007/s10103-008-0576-9 PubMedCrossRefGoogle Scholar
  55. 55.
    Pinheiro AL, Martinez Gerbi ME, Carneiro Ponzi EA, Pedreira Ramalho LM, Marques AM, Carvalho CM, Santos Rde C, Oliveira PC, Noia M (2008) Infrared laser light further improves bone healing when associated with bone morphogenetic proteins and guided bone regeneration: an in vivo study in a rodent model. Photomed Laser Surg 26(2):167–174. doi: 10.1089/pho.2007.7027 PubMedCrossRefGoogle Scholar
  56. 56.
    Pinheiro AL, Martinez Gerbi ME, de Assis LF Jr, Carneiro Ponzi EA, Marques AM, Carvalho CM, de Carneiro Santos R, Oliveira PC, Noia M, Ramalho LM (2009) Bone repair following bone grafting hydroxyapatite guided bone regeneration and infra-red laser photobiomodulation: a histological study in a rodent model. Lasers Med Sci 24(4):234–240. doi: 10.1007/s10103-008-0556-0 PubMedCrossRefGoogle Scholar
  57. 57.
    Fujihara NA, Hiraki KR, Marques MM (2006) Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers Surg Med 38(4):332–336. doi: 10.1002/lsm.20298 PubMedCrossRefGoogle Scholar
  58. 58.
    Stein E, Koehn J, Sutter W, Wendtlandt G, Wanschitz F, Thurnher D, Baghestanian M, Turhani D (2008) Initial effects of low-level laser therapy on growth and differentiation of human osteoblast-like cells. Wien Klin Wochenschr 120(3–4):112–117. doi: 10.1007/s00508-008-0932-6 PubMedCrossRefGoogle Scholar
  59. 59.
    Liu X, Lyon R, Meier HT, Thometz J, Haworth ST (2007) Effect of lower-level laser therapy on rabbit tibial fracture. Photomed Laser Surg 25(6):487–494. doi: 10.1089/pho.2006.2075 PubMedCrossRefGoogle Scholar
  60. 60.
    Gerbi ME, Marques AM, Ramalho LM, Ponzi EA, Carvalho CM, Santos Rde C, Oliveira PC, Noia M, Pinheiro AL (2008) Infrared laser light further improves bone healing when associated with bone morphogenic proteins: an in vivo study in a rodent model. Photomed Laser Surg 26(1):55–60. doi: 10.1089/pho.2007.2026 PubMedCrossRefGoogle Scholar
  61. 61.
    Guzzardella GA, Fini M, Torricelli P, Giavaresi G, Giardino R (2002) Laser stimulation on bone defect healing: an in vitro study. Lasers Med Sci 17(3):216–220. doi: 10.1007/s101030200031 PubMedCrossRefGoogle Scholar
  62. 62.
    Miloro M, Miller JJ, Stoner JA (2007) Low-level laser effect on mandibular distraction osteogenesis. J Oral Maxillofac Surg 65(2):168–176. doi: 10.1016/j.joms.2006.10.002 PubMedCrossRefGoogle Scholar
  63. 63.
    Lirani-Galvao AP, Jorgetti V, da Silva OL (2006) Comparative study of how low-level laser therapy and low-intensity pulsed ultrasound affect bone repair in rats. Photomed Laser Surg 24(6):735–740. doi: 10.1089/pho.2006.24.735 PubMedCrossRefGoogle Scholar
  64. 64.
    Nissan J, Assif D, Gross MD, Yaffe A, Binderman I (2006) Effect of low intensity laser irradiation on surgically created bony defects in rats. J Oral Rehabil 33(8):619–924. doi: 10.1111/j.1365-2842.2006.01601.x PubMedCrossRefGoogle Scholar
  65. 65.
    Khadra M, Kasem N, Haanaes HR, Ellingsen JE, Lyngstadaas SP (2004) Enhancement of bone formation in rat calvarial bone defects using low-level laser therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97(6):693–700. doi: 10.1016/S1079210403006851 PubMedCrossRefGoogle Scholar
  66. 66.
    Kim YD, Kim SS, Hwang DS, Kim SG, Kwon YH, Shin SH, Kim UK, Kim JR, Chung IK (2007) Effect of low-level laser treatment after installation of dental titanium implant – immunohistochemical study of RANKL, RANK, OPG: an experimental study in rats. Lasers Surg Med 39(5):441–450. doi: 10.1002/lsm.20508 PubMedCrossRefGoogle Scholar
  67. 67.
    Lopes CB, Pinheiro AL, Sathaiah S, da Silva NS, Salgado MA (2007) Infrared laser photobiomodulation (lambda 830 nm) on bone tissue around dental implants: a Raman spectroscopy and scanning electronic microscopy study in rabbits. Photomed Laser Surg 25(2):96–101. doi: 10.1089/pho.2006.2030 PubMedCrossRefGoogle Scholar
  68. 68.
    Pinheiro AL, Gerbi ME (2006) Photoengineering of bone repair processes. Photomed Laser Surg 24(2):169–178. doi: 10.1089/pho.2006.24.169 PubMedCrossRefGoogle Scholar
  69. 69.
    Blaya DS, Guimaraes MB, Pozza DH, Weber JB, de Oliveira MG (2008) Histologic study of the effect of laser therapy on bone repair. J Contemp Dent Pract 9(6):41–48. doi: 1526-3711-545 PubMedGoogle Scholar
  70. 70.
    Horton EW (1963) Action of prostaglandin E1 on tissues which respond to bradykinin. Nature 200:892–893PubMedCrossRefGoogle Scholar
  71. 71.
    Seymour RA, Walton JG (1984) Pain control after third molar surgery. Int J Oral Surg 13(6):457–485PubMedCrossRefGoogle Scholar
  72. 72.
    Dinarello CA, Savage N (1989) Interleukin-1 and its receptor. Crit Rev Immunol 9(1):1–20PubMedGoogle Scholar
  73. 73.
    Shapiro RD, Cohen BH (1992) Perioperative pain control. Oral Maxillofac Surg Clin North Am 4:663–674Google Scholar
  74. 74.
    Fisher SE, Frame JW, Rout PG, McEntegart DJ (1988) Factors affecting the onset and severity of pain following the surgical removal of unilateral impacted mandibular third molar teeth. Br Dent J 164(11):351–354PubMedCrossRefGoogle Scholar
  75. 75.
    Basford JR (1995) Low intensity laser therapy: still not an established clinical tool. Lasers Surg Med 16(4):331–342PubMedCrossRefGoogle Scholar
  76. 76.
    Karu T (1989) Laser biostimulation: a photobiological phenomenon. J Photochem Photobiol B 3(4):638–640PubMedCrossRefGoogle Scholar
  77. 77.
    Iijima K, Shimoyama N, Shimoyama M, Mizuguchi T (1993) Effect of low-power He-Ne laser on deformability of stored human erythrocytes. J Clin Laser Med Surg 11(4):185–189PubMedGoogle Scholar
  78. 78.
    Passarella S, Casamassima E, Molinari S, Pastore D, Quagliariello E, Catalano IM, Cingolani A (1984) Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium-neon laser. FEBS Lett 175(1):95–99. doi: 0014-5793(84)80577-3 PubMedCrossRefGoogle Scholar
  79. 79.
    Moore A, Moore O, McQuay H, Gavaghan D (1997) Deriving dichotomous outcome measures from continuous data in randomised controlled trials of analgesics: use of pain intensity and visual analogue scales. Pain 69(3):311–315. doi: S0304-3959(96)03306-4 PubMedCrossRefGoogle Scholar
  80. 80.
    Barden J, Edwards JE, McQuay HJ, Andrew Moore R (2004) Pain and analgesic response after third molar extraction and other postsurgical pain. Pain 107(1–2):86–90. doi: S0304395903004032 PubMedCrossRefGoogle Scholar
  81. 81.
    Irvine J, Chong SL, Amirjani N, Chan KM (2004) Double-blind randomized controlled trial of low-level laser therapy in carpal tunnel syndrome. Muscle Nerve 30(2):182–187. doi: 10.1002/mus.20095 PubMedCrossRefGoogle Scholar
  82. 82.
    Brosseau L, Wells G, Marchand S, Gaboury I, Stokes B, Morin M, Casimiro L, Yonge K, Tugwell P (2005) Randomized controlled trial on low level laser therapy (LLLT) in the treatment of osteoarthritis (OA) of the hand. Lasers Surg Med 36(3):210–219. doi: 10.1002/lsm.20137 PubMedCrossRefGoogle Scholar
  83. 83.
    Tanner AC, Socransky SS, Goodson JM (1984) Microbiota of periodontal pockets losing crestal alveolar bone. J Periodontal Res 19(3):279–291PubMedCrossRefGoogle Scholar
  84. 84.
    Adriaens PA, Edwards CA, de Boever JA, Loesche WJ (1988) Ultrastructural observations on bacterial invasion in cementum and radicular dentin of periodontally diseased human teeth. J Periodontol 59(8):493–503PubMedGoogle Scholar
  85. 85.
    Allaker RP, Douglas CW (2009) Novel anti-microbial therapies for dental plaque-related diseases. Int J Antimicrob Agents 33(1):8–13. doi: 10.1016/j.ijantimicag.2008.07.014 PubMedCrossRefGoogle Scholar
  86. 86.
    Dickers B, Lamard L, Peremans A, Geerts S, Lamy M, Limme M, Rompen E, de Moor RJ, Mahler P, Rocca JP, Nammour S (2009) Temperature rise during photo-activated disinfection of root canals. Lasers Med Sci 24(1):81–85. doi: 10.1007/s10103-007-0526-y PubMedCrossRefGoogle Scholar
  87. 87.
    Ishikawa I, Aoki A, Takasaki AA (2004) Potential applications of Erbium:YAG laser in periodontics. J Periodontal Res 39(4):275–285. doi: 10.1111/j.1600-0765.2004.00738.xJRE738 PubMedCrossRefGoogle Scholar
  88. 88.
    Wainwright M (1998) Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 42(1):13–28PubMedCrossRefGoogle Scholar
  89. 89.
    Bhatti M, MacRobert A, Meghji S, Henderson B, Wilson M (1998) A study of the uptake of toluidine blue O by Porphyromonas gingivalis and the mechanism of lethal photosensitization. Photochem Photobiol 68(3):370–376PubMedCrossRefGoogle Scholar
  90. 90.
    Bhatti M, Nair SP, Macrobert AJ, Henderson B, Shepherd P, Cridland J, Wilson M (2001) Identification of photolabile outer membrane proteins of Porphyromonas gingivalis. Curr Microbiol 43(2):96–99. doi: 10.1007/s002840010268 PubMedCrossRefGoogle Scholar
  91. 91.
    Harris F, Chatfield LK, Phoenix DA (2005) Phenothiazinium based photosensitisers – photodynamic agents with a multiplicity of cellular targets and clinical applications. Curr Drug Targets 6(5):615–627PubMedCrossRefGoogle Scholar
  92. 92.
    Bevilacqua IM, Nicolau RA, Khouri S, Brugnera A Jr, Teodoro GR, Zangaro RA, Pacheco MT (2007) The impact of photodynamic therapy on the viability of Streptococcus mutans in a planktonic culture. Photomed Laser Surg 25(6):513–518. doi: 10.1089/pho.2007.2109 PubMedCrossRefGoogle Scholar
  93. 93.
    Soukos NS, Ximenez-Fyvie LA, Hamblin MR, Socransky SS, Hasan T (1998) Targeted antimicrobial photochemotherapy. Antimicrob Agents Chemother 42(10):2595–2601PubMedGoogle Scholar
  94. 94.
    Wood S, Nattress B, Kirkham J, Shore R, Brookes S, Griffiths J, Robinson C (1999) An in vitro study of the use of photodynamic therapy for the treatment of natural oral plaque biofilms formed in vivo. J Photochem Photobiol B 50(1):1–7. doi: 10.1016/S1011-1344(99)00056-1 PubMedCrossRefGoogle Scholar
  95. 95.
    Matevski D, Weersink R, Tenenbaum HC, Wilson B, Ellen RP, Lepine G (2003) Lethal photosensitization of periodontal pathogens by a red-filtered xenon lamp in vitro. J Periodontal Res 38(4):428–435PubMedGoogle Scholar
  96. 96.
    Prates RA, Yamada AM Jr, Suzuki LC, Eiko Hashimoto MC, Cai S, Gouw-Soares S, Gomes L, Ribeiro MS (2007) Bactericidal effect of malachite green and red laser on Actinobacillus actinomycetemcomitans. J Photochem Photobiol B 86(1):70–76. doi: 10.1016/j.jphotobiol.2006.07.010 PubMedCrossRefGoogle Scholar
  97. 97.
    Soukos NS, Hamblin MR, Hasan T (1997) The effect of charge on cellular uptake and phototoxicity of polylysine chlorin(e6) conjugates. Photochem Photobiol 65(4):723–729PubMedCrossRefGoogle Scholar
  98. 98.
    Jori G, Fabris C, Soncin M, Ferro S, Coppellotti O, Dei D, Fantetti L, Chiti G, Roncucci G (2006) Photodynamic therapy in the treatment of microbial infections: Basic principles and perspective applications. Lasers Surg Med 38(5):468–481. doi: 10.1002/lsm.20361 PubMedCrossRefGoogle Scholar
  99. 99.
    Wood S, Metcalf D, Devine D, Robinson C (2006) Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. J Antimicrob Chemother 57(4):680–684. doi: 10.1093/jac/dkl021 PubMedCrossRefGoogle Scholar
  100. 100.
    Qin Y, Luan X, Bi L, He G, Bai X, Zhou C, Zhang Z (2008) Toluidine blue-mediated photoinactivation of periodontal pathogens from supragingival plaques. Lasers Med Sci 23(1):49–54. doi: 10.1007/s10103-007-0454-x PubMedCrossRefGoogle Scholar
  101. 101.
    Pfitzner A, Sigusch BW, Albrecht V, Glockmann E (2004) Killing of periodontopathogenic bacteria by photodynamic therapy. J Periodontol 75(10):1343–1349PubMedCrossRefGoogle Scholar
  102. 102.
    Komerik N, Wilson M, Poole S (2000) The effect of photodynamic action on two virulence factors of gram-negative bacteria. Photochem Photobiol 72(5):676–680PubMedCrossRefGoogle Scholar
  103. 103.
    Soukos NS, Som S, Abernethy AD, Ruggiero K, Dunham J, Lee C, Doukas AG, Goodson JM (2005) Phototargeting oral black-pigmented bacteria. Antimicrob Agents Chemother 49(4):1391–1396. doi: 10.1128/AAC.49.4.1391-1396.2005 PubMedCrossRefGoogle Scholar
  104. 104.
    Konig K, Teschke M, Sigusch B, Glockmann E, Eick S, Pfister W (2000) Red light kills bacteria via photodynamic action. Cell Mol Biol 46(7):1297–1303PubMedGoogle Scholar
  105. 105.
    Sarkar S, Wilson M (1993) Lethal photosensitization of bacteria in subgingival plaque from patients with chronic periodontitis. J Periodontal Res 28(3):204–210PubMedCrossRefGoogle Scholar
  106. 106.
    Komerik N, Nakanishi H, MacRobert AJ, Henderson B, Speight P, Wilson M (2003) In vivo killing of Porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model. Antimicrob Agents Chemother 47(3):932–940PubMedCrossRefGoogle Scholar
  107. 107.
    de Almeida JM, Theodoro LH, Bosco AF, Nagata MJ, Oshiiwa M, Garcia VG (2007) Influence of photodynamic therapy on the development of ligature-induced periodontitis in rats. J Periodontol 78(3):566–575. doi: 10.1902/jop.2007.060214 PubMedCrossRefGoogle Scholar
  108. 108.
    de Almeida JM, Theodoro LH, Bosco AF, Nagata MJ, Oshiiwa M, Garcia VG (2008) In vivo effect of photodynamic therapy on periodontal bone loss in dental furcations. J Periodontol 79(6):1081–1088. doi: 10.1902/jop.2008.070456 PubMedCrossRefGoogle Scholar
  109. 109.
    Sigusch BW, Pfitzner A, Albrecht V, Glockmann E (2005) Efficacy of photodynamic therapy on inflammatory signs and two selected periodontopathogenic species in a beagle dog model. J Periodontol 76(7):1100–1105. doi: 10.1902/jop.2005.76.7.1100 PubMedCrossRefGoogle Scholar
  110. 110.
    Shibli JA, Martins MC, Nociti FH Jr, Garcia VG, Marcantonio E Jr (2003) Treatment of ligature-induced peri-implantitis by lethal photosensitization and guided bone regeneration: a preliminary histologic study in dogs. J Periodontol 74(3):338–345PubMedCrossRefGoogle Scholar
  111. 111.
    Shibli JA, Martins MC, Ribeiro FS, Garcia VG, Nociti FH Jr, Marcantonio E Jr (2006) Lethal photosensitization and guided bone regeneration in treatment of peri-implantitis: an experimental study in dogs. Clin Oral Implants Res 17(3):273–281. doi: 10.1111/j.1600-0501.2005.01167.x PubMedCrossRefGoogle Scholar
  112. 112.
    Hayek RR, Araujo NS, Gioso MA, Ferreira J, Baptista-Sobrinho CA, Yamada AM, Ribeiro MS (2005) Comparative study between the effects of photodynamic therapy and conventional therapy on microbial reduction in ligature-induced peri-implantitis in dogs. J Periodontol 76(8):1275–1281. doi: 10.1902/jop.2005.76.8.1275 PubMedCrossRefGoogle Scholar
  113. 113.
    de Almeida JM, Theodoro LH, Bosco AF, Nagata MJ, Bonfante S, Garcia VG (2008) Treatment of experimental periodontal disease by photodynamic therapy in rats with diabetes. J Periodontol 79(11):2156–2165. doi: 10.1902/jop.2008.080103 PubMedCrossRefGoogle Scholar
  114. 114.
    Fernandes LA, de Almeida JM, Theodoro LH, Bosco AF, Nagata MJ, Martins TM, Okamoto T, Garcia VG (2009) Treatment of experimental periodontal disease by photodynamic therapy in immunosuppressed rats. J Clin Periodontol 36(3):219–228. doi: 10.1111/j.1600-051X.2008.01355.x PubMedCrossRefGoogle Scholar
  115. 115.
    Braun A, Dehn C, Krause F, Jepsen S (2008) Short-term clinical effects of adjunctive antimicrobial photodynamic therapy in periodontal treatment: a randomized clinical trial. J Clin Periodontol 35(10):877–884. doi: 10.1111/j.1600-051X.2008.01303.x PubMedCrossRefGoogle Scholar
  116. 116.
    Christodoulides N, Nikolidakis D, Chondros P, Becker J, Schwarz F, Rossler R, Sculean A (2008) Photodynamic therapy as an adjunct to non-surgical periodontal treatment: a randomized, controlled clinical trial. J Periodontol 79(9):1638–1644. doi: 10.1902/jop.2008.070652 PubMedCrossRefGoogle Scholar
  117. 117.
    Andersen R, Loebel N, Hammond D, Wilson M (2007) Treatment of periodontal disease by photodisinfection compared to scaling and root planing. J Clin Dent 18(2):34–38PubMedGoogle Scholar
  118. 118.
    de Oliveira RR, Schwartz-Filho HO, Novaes AB Jr, Taba M Jr (2007) Antimicrobial photodynamic therapy in the non-surgical treatment of aggressive periodontitis: a preliminary randomized controlled clinical study. J Periodontol 78(6):965–973. doi: 10.1902/jop.2007.060494 PubMedCrossRefGoogle Scholar
  119. 119.
    de Oliveira RR, Schwartz-Filho HO, Novaes AB, Garlet GP, de Souza RF, Taba M, Scombatti de Souza SL, Ribeiro FJ (2009) Antimicrobial photodynamic therapy in the non-surgical treatment of aggressive periodontitis: cytokine profile in gingival crevicular fluid, preliminary results. J Periodontol 80(1):98–105. doi: 10.1902/jop.2009.070465 PubMedCrossRefGoogle Scholar
  120. 120.
    Haas R, Baron M, Dortbudak O, Watzek G (2000) Lethal photosensitization, autogenous bone, and e-PTFE membrane for the treatment of peri-implantitis: preliminary results. Int J Oral Maxillofac Implants 15(3):374–382PubMedGoogle Scholar
  121. 121.
    Dortbudak O, Haas R, Bernhart T, Mailath-Pokorny G (2001) Lethal photosensitization for decontamination of implant surfaces in the treatment of peri-implantitis. Clin Oral Implants Res 12(2):104–108PubMedCrossRefGoogle Scholar
  122. 122.
    Chondros P, Nikolidakis D, Christodoulides N, Rossler R, Gutknecht N, Sculean A (2008) Photodynamic therapy as adjunct to non-surgical periodontal treatment in patients on periodontal maintenance: a randomized controlled clinical trial. Lasers Med Sci 24(5):681–688. doi: 10.1007/s10103-008-0565-z PubMedCrossRefGoogle Scholar
  123. 123.
    Luan XL, Qin YL, Bi LJ, Hu CY, Zhang ZG, Lin J, Zhou CN (2009) Histological evaluation of the safety of toluidine blue-mediated photosensitization to periodontal tissues in mice. Lasers Med Sci 24(2):162–166. doi: 10.1007/s10103-007-0513-3 PubMedCrossRefGoogle Scholar
  124. 124.
    Gad F, Zahra T, Francis KP, Hasan T, Hamblin MR (2004) Targeted photodynamic therapy of established soft-tissue infections in mice. Photochem Photobiol Sci 3(5):451–458. doi: 10.1039/b311901g PubMedCrossRefGoogle Scholar
  125. 125.
    Lauro FM, Pretto P, Covolo L, Jori G, Bertoloni G (2002) Photoinactivation of bacterial strains involved in periodontal diseases sensitized by porphycene-polylysine conjugates. Photochem Photobiol Sci 1(7):468–470PubMedCrossRefGoogle Scholar
  126. 126.
    Gutknecht N (2006) Proceedings of the 1st International Workshop of Evidence Based Dentistry on Lasers in Dentistry. Quintessence, New Malden UKGoogle Scholar
  127. 127.
    Jori G (2006) Photodynamic therapy of microbial infections: state of the art and perspectives. J Environ Pathol Toxicol Oncol 25(1–2):505–519. doi: 5d84548f012e18bf,70ad294f57d6fc57 PubMedGoogle Scholar
  128. 128.
    Komerik N, MacRobert AJ (2006) Photodynamic therapy as an alternative antimicrobial modality for oral infections. J Environ Pathol Toxicol Oncol 25(1–2):487–504PubMedGoogle Scholar
  129. 129.
    Meisel P, Kocher T (2005) Photodynamic therapy for periodontal diseases: State of the art. J Photochem Photobiol B 79(2):159–170. doi: 10.1016/j.jphotobiol.2004.11.023 PubMedCrossRefGoogle Scholar
  130. 130.
    Baker P (2002) The management of gingival recession. Dent Update 29(3):114–120, 122–124, 126PubMedGoogle Scholar
  131. 131.
    Uchida A, Wakano Y, Fukuyama O, Miki T, Iwayama Y, Okada H (1980) Controlled clinical evaluation of a 10% strontium chloride dentifrice in treatment of dentin hypersensitivity following periodontal surgery. J Periodontol 51(10):578–581PubMedGoogle Scholar
  132. 132.
    Nishida M, Katamsi D, Ucheda A (1976) Hypersensitivity of the exposed root surfaces after surgical periodontal treatment. J Osaka Univ Dent Soc 16:73–77Google Scholar
  133. 133.
    Chabanski MB, Gillam DG, Bulman JS, Newman HN (1997) Clinical evaluation of cervical dentine sensitivity in a population of patients referred to a specialist periodontology department: a pilot study. J Oral Rehabil 24(9):666–672PubMedCrossRefGoogle Scholar
  134. 134.
    Chabanski MB, Gillam DG, Bulman JS, Newman HN (1996) Prevalence of cervical dentine sensitivity in a population of patients referred to a specialist periodontology department. J Clin Periodontol 23(11):989–992PubMedCrossRefGoogle Scholar
  135. 135.
    Taani SD, Awartani F (2002) Clinical evaluation of cervical dentin sensitivity (CDS) in patients attending general dental clinics (GDC) and periodontal specialty clinics (PSC). J Clin Periodontol 29(2):118–122PubMedCrossRefGoogle Scholar
  136. 136.
    Ling TY, Gillam DG (1996) The effectiveness of desensitizing agents for the treatment of cervical dentine sensitivity (CDS) – a review. J West Soc Periodontol Periodontal Abstr 44(1):5–12PubMedGoogle Scholar
  137. 137.
    Tate Y, Yoshiba K, Yoshiba N, Iwaku M, Okiji T, Ohshima H (2006) Odontoblast responses to GaAlAs laser irradiation in rat molars: an experimental study using heat-shock protein-25 immunohistochemistry. Eur J Oral Sci 114(1):50–57. doi: 10.1111/j.1600-0722.2006.00261.x PubMedCrossRefGoogle Scholar
  138. 138.
    Melcer J, Chaumette MT, Melcer F (1987) Dental pulp exposed to the CO2 laser beam. Lasers Surg Med 7(4):347–352PubMedCrossRefGoogle Scholar
  139. 139.
    Ferreira AN, Silveira L, Genovese WJ, de Araujo VC, Frigo L, de Mesquita RA, Guedes E (2006) Effect of GaAlAs laser on reactional dentinogenesis induction in human teeth. Photomed Laser Surg 24(3):358–365. doi: 10.1089/pho.2006.24.358 PubMedCrossRefGoogle Scholar
  140. 140.
    Matsui S, Tsujimoto Y, Matsushima K (2007) Stimulatory effects of hydroxyl radical generation by Ga-Al-As laser irradiation on mineralization ability of human dental pulp cells. Biol Pharm Bull 30(1):27–31. doi: JST.JSTAGE/bpb/30.27 PubMedCrossRefGoogle Scholar
  141. 141.
    Wakabayashi H, Matsumoto K (1988) Treatment of dentin hypersensitivity by GaAlAs laser irradiation (abstract). J Dent Res 67:182Google Scholar
  142. 142.
    Gerschman JA, Ruben J, Gebart-Eaglemont J (1994) Low level laser therapy for dentinal tooth hypersensitivity. Aust Dent J 39(6):353–357PubMedCrossRefGoogle Scholar
  143. 143.
    Ladalardo TC, Pinheiro A, Campos RA, Brugnera Junior A, Zanin F, Albernaz PL, Weckx LL (2004) Laser therapy in the treatment of dentine hypersensitivity. Braz Dent J 15(2):144–150PubMedCrossRefGoogle Scholar
  144. 144.
    Marsilio AL, Rodrigues JR, Borges AB (2003) Effect of the clinical application of the GaAlAs laser in the treatment of dentine hypersensitivity. J Clin Laser Med Surg 21(5):291–296. doi: 10.1089/104454703322564505 PubMedCrossRefGoogle Scholar
  145. 145.
    Corona SA, Nascimento TN, Catirse AB, Lizarelli RF, Dinelli W, Palma-Dibb RG (2003) Clinical evaluation of low-level laser therapy and fluoride varnish for treating cervical dentinal hypersensitivity. J Oral Rehabil 30(12):1183–1189PubMedCrossRefGoogle Scholar
  146. 146.
    Aranha AC, Pimenta LA, Marchi GM (2009) Clinical evaluation of desensitizing treatments for cervical dentin hypersensitivity. Braz Oral Res 23(3):333–339. doi: S1806-83242009000300018 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2010

Authors and Affiliations

  • Carlos de Paula Eduardo
    • 1
  • Patricia Moreira de Freitas
    • 1
  • Marcella Esteves-Oliveira
    • 2
  • Ana Cecília Corrêa Aranha
    • 1
  • Karen Müller Ramalho
    • 1
  • Alyne Simões
    • 3
  • Marina Stella Bello-Silva
    • 1
  • Jan Tunér
    • 4
  1. 1.Special Laboratory of Lasers in Dentistry (LELO), Department of Restorative DentistrySchool of Dentistry of the University of São Paulo (USP)São PauloBrazil
  2. 2.Department of Conservative Dentistry, Periodontology and Preventive DentistryRWTH Aachen UniversityAachenGermany
  3. 3.Department of Dental Materials, Oral Biology Research CenterSchool of Dentistry of the University of São Paulo (USP)São PauloBrazil
  4. 4.Swedish Laser Medical SocietyGrangesbergSweden

Personalised recommendations