Lasers in Medical Science

, Volume 26, Issue 4, pp 415–420 | Cite as

Intraoral laser welding: ultrastructural and mechanical analysis to compare laboratory laser and dental laser

  • Carlo Fornaini
  • Francesca Passaretti
  • Elena Villa
  • Jean-Paul Rocca
  • Elisabetta Merigo
  • Paolo Vescovi
  • Marco Meleti
  • Maddalena Manfredi
  • Samir Nammour
Original Article


The Nd:YAG laser has been used since 1970 in dental laboratories to weld metals on dental prostheses. Recently in several clinical cases, we have suggested that the Nd:YAG laser device commonly utilized in the dental office could be used to repair broken fixed, removable and orthodontic prostheses and to weld metals directly in the mouth. The aim of this work was to evaluate, using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and dynamic mechanical analysis (DMA), the quality of the weld and its mechanical strength, comparing a device normally used in dental laboratory and a device normally used in the dental office for oral surgery, the same as that described for intraoral welding. Metal plates of a Co-Cr-Mo dental alloy and steel orthodontic wires were subjected to four welding procedures: welding without filler metal using the laboratory laser, welding with filler metal using the laboratory laser, welding without filler metal using the office laser, and welding with filler metal using the office laser. The welded materials were then analysed by SEM, EDS and DMA. SEM analysis did not show significant differences between the samples although the plates welded using the office laser without filler metal showed a greater number of fissures than the other samples. EDS microanalysis of the welding zone showed a homogeneous composition of the metals. Mechanical tests showed similar elastic behaviours of the samples, with minimal differences between the samples welded with the two devices. No wire broke even under the maximum force applied by the analyser. This study seems to demonstrate that the welds produced using the office Nd:YAG laser device and the laboratory Nd:YAG laser device, as analysed by SEM, EDS and DMA, showed minimal and nonsignificant differences, although these findings need to be confirmed using a greater number of samples.


Laser Welding Nd:YAG Dental prosthetics SEM EDS DMA 


  1. 1.
    Bertolotti M (1999, trans. 2004) The history of the laser, Institute of Physics. Taylor & Francis, LondonGoogle Scholar
  2. 2.
    Svelto O (1998) Principles of lasers, 4th edn. (trans. Hanna D), Springer, BerlinGoogle Scholar
  3. 3.
    Goldman L, Goldman B, Van Lieu N (1987) Current laser dentistry. Lasers Surg Med 6(6):559–562PubMedCrossRefGoogle Scholar
  4. 4.
    Coluzzi DJ (2008) An overview of lasers in dentistry. Alpha Omegan 101(3):125–126PubMedCrossRefGoogle Scholar
  5. 5.
    Gordon TE, Smith DL (1970) A laser in the dental lab. Laser Focus Magazine, June: 37–39Google Scholar
  6. 6.
    Brudvik JS, Lee S, Croshaw SN, Reimers DL (2008) Laser welding of removable partial denture frameworks. Int J Prosthodont 21(4):285–291PubMedGoogle Scholar
  7. 7.
    Tambasco J, Anthony T, Sandven O (1996) Laser welding in the dental laboratory: an alternative to soldering. J Dent Technol 13(4):23–31PubMedGoogle Scholar
  8. 8.
    Bertrand C (1995) La soudure au laser: une technique d'avenir au laboratoire de prothèse. Arts Tech Dent 6:363–368Google Scholar
  9. 9.
    Santos M, Acciari HA, Vercik LCO, Guastaldi AC (2003) Laser weld: microstructure and corrosion study of Ag-Pd-Au-Cu alloy of the dental application. Mater Lett 57(13-14):1888–1893CrossRefGoogle Scholar
  10. 10.
    Bertrand C, Le Petitcorps Y, Albingre L, Dupuis V (2001) The laser welding technique applied to the non precious dental alloys procedure and results. Br Dent J 190(5):255–257PubMedGoogle Scholar
  11. 11.
    Hoffman J (1992) Dental laser welding technique. Procedural report.1. Quality, expense, and risks of innovative bonding technique. Dent Lab 40:1221–1224Google Scholar
  12. 12.
    Hoffmann J (1992) Dental laser welding technique. Procedural report 2. Indications for use of innovative technique. Dent Lab 40:1321–1328Google Scholar
  13. 13.
    Shinoda T, Matsunaga K, Shinhara M (1991) Laser welding of titanium alloy. Weld Int 5(5):346–351CrossRefGoogle Scholar
  14. 14.
    Yamagishi T, Ito M, Fujimura Y (1993) Mechanical properties of laser welds of titanium in dentistry by pulsed Nd:YAG laser apparatus. J Prosthet Dent 70:264–273PubMedCrossRefGoogle Scholar
  15. 15.
    Fornaini C, Bertrand C, Rocca JP, Bonanini M, Nammour S (2009) Welding in the dental office by fiber-delivered laser: a new technique. Photomed Laser Surg 27:417–423PubMedCrossRefGoogle Scholar
  16. 16.
    Fornaini C, Bertrand C, Rocca JP, Mahler P, Bonanini M, Vescovi P, Merigo E, Nammour S (2009) Intra-oral laser welding: an in vitro evaluation of thermal increase. Lasers Med Sci. doi:10.1007/s10103-009-0666-3
  17. 17.
    Fornaini C, Vescovi P, Merigo E, Rocca JP, Mahler P, Bertrand C, Nammour S (2010) Intraoral metal laser welding: a case report. Lasers Med Sci 25:303–307PubMedCrossRefGoogle Scholar
  18. 18.
    Goodhew PJ, Humphreys J, Beanland R (2001) Humphreys electron microscopy and analysis, 3rd edn. Taylor & Francis, LondonGoogle Scholar
  19. 19.
    Bozzola JJ, Russell LD (1999) Electron microscopy, 2nd edn. Jones and Bartlett, Sudbury, MAGoogle Scholar
  20. 20.
    Julian P (2005) Heath dictionary of microscopy. Wiley, ChichesterGoogle Scholar
  21. 21.
    Goldstein J, Newbury DE, Joy DC, Lyman CH, Echlin P, Lifshin E, Sawyer LC, Michael JR (eds) (2003) Scanning electron microscopy and X-ray microanalysis. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  22. 22.
    Menard K (2008) Dynamic mechanical analysis: a practical introduction, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  23. 23.
    Dawes C (1992) Laser welding. Abington Publishing, Cambridge, in association with The Welding InstituteGoogle Scholar
  24. 24.
    Ream SL (1988) Laser materials processing. IFS Publications and Springer in association with the Laser Institute of America, New York. pp 69–74Google Scholar
  25. 25.
    Baba N, Watanabe I, Liu J, Atsuta M (2004) Mechanical strength of laser-welded cobalt-chromium alloy. J Biomed Mater Res B Appl Biomater 69(2):121–124PubMedCrossRefGoogle Scholar
  26. 26.
    Liu J, Watanabe I, Yoshida K, Atsuta M (2002) Joint strength of laser-welded titanium. Dent Mater 18(2):143–148PubMedCrossRefGoogle Scholar
  27. 27.
    Duhamel RF, Banas CM (1983) Laser welding of steel and nickel alloys. Lasers in material processing. American Society of Metals, Cleveland, OHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2010

Authors and Affiliations

  • Carlo Fornaini
    • 1
    • 3
    • 4
  • Francesca Passaretti
    • 2
  • Elena Villa
    • 2
  • Jean-Paul Rocca
    • 3
  • Elisabetta Merigo
    • 1
  • Paolo Vescovi
    • 1
  • Marco Meleti
    • 1
  • Maddalena Manfredi
    • 1
  • Samir Nammour
    • 4
  1. 1.Oral Medicine and Laser-Assisted Surgery Unit, Dental School, Faculty of MedicineUniversity of ParmaParmaItaly
  2. 2.Italian National Research Council, Institute for Energetics and Interphases (CNR-IENI)LeccoItaly
  3. 3.Faculty of DentistryUniversity of Nice “Sophia Antipolis”NiceFrance
  4. 4.Laser Unit, Department of Dental Sciences, Faculty of MedicineUniversity of LiègeLiègeBelgium

Personalised recommendations