Advertisement

Lasers in Medical Science

, Volume 25, Issue 5, pp 629–639 | Cite as

En face optical coherence tomography investigation of apical microleakage after laser-assisted endodontic treatment

  • Carmen Todea
  • Cosmin Balabuc
  • Cosmin Sinescu
  • Laura Filip
  • Cristina Kerezsi
  • Mircea Calniceanu
  • Meda Negrutiu
  • Adrian Bradu
  • Michael Hughes
  • Adrian Gh. Podoleanu
Original Article

Abstract

The aim of our study was to evaluate the potential of en face optical coherence tomography (OCT) for the detection of apical microleakage after 980 nm and 1,064 nm laser-assisted endodontic treatment. Ninety, human, single-rooted teeth with one straight root canal and closed apices were used. All roots were prepared biomechanically to the working length at an apical size 30 and 0.06 taper. The teeth were divided into three equal groups of 30 samples each, according to the treatment to be applied to the root canal. Group I received 980 nm diode laser (3 W, 0.01 s on time, 0.01 s off time, 5 s per procedure, four procedures); group II received neodymium:yttrium–aluminum–garnet (Nd:YAG) laser (1.5 W, 15 Hz, 5 s per procedure, four procedures). In group III the root canals were approached conventionally only. In all groups the root canal filling was performed with AH Plus endodontic sealer and gutta-percha points. An en face OCT prototype was used for the investigation of apical microleakage. According to one-way analysis of variance (ANOVA) and en face OCT, the number of defects in the laser groups was significantly lower (P < 0.005) than in the control group. No statistical differences were noted between the laser groups (P = 0.049). En face OCT imaging proved that laser-assisted endodontic treatment improved the prognosis of root canal filling and led to a reduction in apical microleakage.

Keywords

En face optical coherence tomography (OCT) 980 nm Diode laser Neodymium:yttrium–aluminum–garnet (Nd:YAG) laser Apical microleakage Endodontic treatment 

Notes

Acknowledgements

This research was supported by a research grant from the Romanian National Authority for Scientific Research, number CEEX 82/2006. The authors thank Ophthalmic Technologies Inc., Toronto, Canada, for the 3-D imaging program used in Fig. 6, and Politehnica University of Timisoara, Romania, for the optical microscopy investigation.

References

  1. 1.
    Gutknecht N, Behrens VG (1991) Instrumentation of root canal walls with Nd-YAG laser. ZWR 100:748–755PubMedGoogle Scholar
  2. 2.
    White JM, Goodis HE, Marshall GW, Marshall SJ (1993) Identification of the physical modification threshold of dentin induced by Nd:YAG lasers using scanning electron microscopy. Scanning Microsc 7:239–246PubMedGoogle Scholar
  3. 3.
    Moritz A, Doertbudak O, Gutknecht N, Goharkhay K, Schoop U, Sperr W (1997) Nd:YAG laser irradiation of infected root canals in combination with microbiological examinations. J Am Dent Assoc 128:1525–1530PubMedGoogle Scholar
  4. 4.
    Gutknecht N, Nuebler-Moritz M, Burghardt SF, Lampert F (1997) The efficiency of root canal disinfection using a holmium:yttrium-aluminum-garnet laser in vitro. J Clin Laser Med Surg 15:75–78PubMedGoogle Scholar
  5. 5.
    Moritz A, Gutknecht N, Goharkhay K, Schoop U, Wernisch J, Sperr W (1997) In vitro irradiation of infected root canals with a diode laser: results of microbiologic, infrared spectrometric, and stain penetration examinations. Quintessence Int 28:205–209PubMedGoogle Scholar
  6. 6.
    Gutknecht N, van Gogswaardt D, Conrads G, Apel C, Schubert C, Lampert F (2000) Diode laser radiation and its bactericidal effect in root canal wall dentin. J Clin Laser Med Surg 18:57–60PubMedGoogle Scholar
  7. 7.
    Wang X, Sun Y, Kimura Y, Kinoshita J, Ishizaki NT, Matsumoto K (2005) Effects of diode laser irradiation on smear layer removal from root canal walls and apical leakage after obturation. Photomed Laser Surg 23:575–581. doi: 10.1089/pho.2005.23.575 CrossRefPubMedGoogle Scholar
  8. 8.
    Gutknecht N, Franzen R, Schippers M, Lampert F (2004) Bactericidal effect of a 980-nm diode laser in the root canal wall dentin of bovine teeth. J Clin Laser Med Surg 22:9–13. doi: 10.1089/104454704773660912 CrossRefPubMedGoogle Scholar
  9. 9.
    Ebihara A, Majaron B, Liaw L-HL, Krasieva TB, Wilder-Smith P (2002) Er:YAG laser modification of root canal dentine: influence of pulse duration, repetitive irradiation and water spray. Lasers Med Sci 17:198–207. doi: 10.1007/s101030200029 CrossRefPubMedGoogle Scholar
  10. 10.
    Aranha AC, Domingues FB, Franco VO, Gutknecht N, Eduardo CP (2005) Effects of Er:YAG and Nd:YAG lasers on dentin permeability in root surfaces: a preliminary in vitro study. Photomed Laser Surg 23:504–508. doi: 10.1089/pho.2005.23.504 CrossRefPubMedGoogle Scholar
  11. 11.
    Kivanç BH, Ulusoy OIA, Görgül G (2008) Effects of Er:YAG laser and Nd:YAG laser treatment on the root canal dentin of human teeth: a SEM study. Lasers Med Sci 23:247–252. doi: 10.1007/s10103-007-0474-6 CrossRefPubMedGoogle Scholar
  12. 12.
    Stabholz A (2003) The role of laser technology in modern endodontics. In: Lasers in dentistry, revolution of dental treatment in the new millenium. Int Congr Ser 1248:21–27Google Scholar
  13. 13.
    Jahan KMR, Hossain M, Nakamura Y, Yoshishige Y, Kinoshita J-I, Matsumoto K (2006) An assessment following root canal preparation by Er,Cr: YSGG laser irradiation in straight and curved roots, in vitro laser. Med Sci 21:229–234Google Scholar
  14. 14.
    Franzen R, Esteves-Oliveira M, Meister J, Wallerang A, Vanweersch L, Lampert F, Gutknecht N (2007) Decontamination of deep dentin by means of erbium, chromium:yttrium-scandium-gallium-garnet laser irradiation. Lasers Med Sci 24:75–80Google Scholar
  15. 15.
    Minas NH, Meister J, Franzen R, Gutknecht N, Lampert F, Mir M (2007) In vitro preliminary study to evaluate the capability of Er,Cr:YSGG laser in posterior teeth root canal preparation with step-back technique. Laser Med Sci 24:7–12Google Scholar
  16. 16.
    Gutknecht N, Franzen R, Meister J, Vanweersch L, Mir M (2005) Temperature evolution on human teeth root surface after diode laser assisted endodontic treatment. Lasers Med Sci 20:99–103. doi: 10.1007/s10103-005-0347-9 CrossRefPubMedGoogle Scholar
  17. 17.
    Moritz A, Jakolitsch S, Goharkay K, Schoop U, Kluger W, Malinger R et al (2000) Morphologic changes correlating to different sensitivities of Escherichia coli and Enterococcus faecalis to Nd:YAG laser irradiation through dentin. Lasers Surg Med 26:250–261. doi: 10.1002/(SICI)1096-9101(2000)26:3<250::AID-LSM2>3.0.CO;2-H CrossRefPubMedGoogle Scholar
  18. 18.
    Park DS, Lee HJ, Yoo HM, Oh TS (2001) Effect of Nd:YAG laser irradiation on the apical leakage of obturated root canals: an electrochemical study. Int Endod J 34:318–321. doi: 10.1046/j.1365-2591.2001.00397.x CrossRefPubMedGoogle Scholar
  19. 19.
    Miserendino IJ, Levy GC, Riziou IM (1995) Effects of Nd:YAG laser on the permeability of root canal wall dentin. J Endod 21:83–87. doi: 10.1016/S0099-2399(06)81101-5 CrossRefPubMedGoogle Scholar
  20. 20.
    Nammour S, Kowaly K, Powell GL, Van Reck J, Rocca JP (2004) External temperature during KTP-Nd:YAG laser irradiation in root canals: an in vitro study. Lasers Med Sci 19:27–32. doi: 10.1007/s10103-004-0303-0 CrossRefPubMedGoogle Scholar
  21. 21.
    Kimura Y, Yokoyama K, Matsumoto K (2001) Apical leakage of obturated canals prepared by Er:YAG Laser. J Endod 9):567–570. doi: 10.1097/00004770-200109000-00003 CrossRefGoogle Scholar
  22. 22.
    Depraet FJHW, De Bruyne MAA, De Moor RJG (2005) The sealing ability of an epoxy resin root canal sealer after Nd:YAG laser irradiation of the root canal. Int Endod J 38:302–309. doi: 10.1111/j.1365-2591.2005.00948.x CrossRefPubMedGoogle Scholar
  23. 23.
    De Souza FD, Pecora JD, Silva RG (2005) The effect on coronal leakage of liquid adhesive application over root filling after smear layer removal with EDTA or Er:YAG laser. Oral Surg 99:125–128Google Scholar
  24. 24.
    Moritz A, Schoop U (2006) Lasers in endodontics. In: Moritz A (ed) Oral laser application. Quintessence Publishing, Berlin, pp 241–313Google Scholar
  25. 25.
    Dow PR, Ingle JI (1955) Isotope determination of root-canal failure. Oral Surg Oral Med Oral Pathol 8:1100–1104. doi: 10.1016/0030-4220(55)90062-1 CrossRefPubMedGoogle Scholar
  26. 26.
    Strindberg LZ (1956) The dependence of the results of pulp therapy on certain factors. Acta Odontol Scand 14:1–175. doi: 10.3109/00016355609007499 CrossRefGoogle Scholar
  27. 27.
    Saunders WP, Saunders EM (1994) Coronal leakage as a cause of failure in root-canal therapy: a review. Endod Dent Traumatol 10:105–108. doi: 10.1111/j.1600-9657.1994.tb00533.x CrossRefPubMedGoogle Scholar
  28. 28.
    Wu MK, Wesselink PR (1993) Endodontic leakage studies reconsidered. Part I. Methodology, application and relevance. Int Endod J 26:37–43. doi: 10.1111/j.1365-2591.1993.tb00540.x CrossRefPubMedGoogle Scholar
  29. 29.
    Wennberg A, Irstavik D (1990) Adhesion of root-canal sealers to bovine dentine and gutta-percha. Int Endod J 23:13–19. doi: 10.1111/j.1365-2591.1990.tb00797.x CrossRefPubMedGoogle Scholar
  30. 30.
    Gettleman BH, Messer HH, ElDeeb ME (1999) Adhesion of sealer cements to dentin with and without the smear layer. J Endod 17:15–20CrossRefGoogle Scholar
  31. 31.
    Pecora JD, Cussioli AL, Guerisoli DM, Marchesan MA, Sousa-Neto MD, Brugnera JA (2001) Evaluation of Er: YAG laser and EDTAC on dentin adhesion of six endodontic sealers. Braz Dent J 12:27–30PubMedGoogle Scholar
  32. 32.
    Fidel RA, Sousa N, Spano JC, Barbin EL, Pecora JD (1994) Adhesion of calcium hydroxide-containing root-canal sealers. Braz Dent J 5:53–57PubMedGoogle Scholar
  33. 33.
    Lalh MS, Titley K, Torneck CD, Friedman S (1999) The shear bond strength of glass ionomer cement sealers to bovine dentine conditioned with common endodontic irrigants. Int Endod J 32:430–435. doi: 10.1046/j.1365-2591.1999.00238.x CrossRefPubMedGoogle Scholar
  34. 34.
    Tamse A, Katz A, Kablan F (1998) Comparison of apical leakage shown by four different dyes with two evaluating methods. Int Endod J 31:333–337. doi: 10.1046/j.1365-2591.1998.00154.x CrossRefPubMedGoogle Scholar
  35. 35.
    Katz A, Rosenwasser R, Tamse A (1998) Root positioning and leakage to dye in extracted teeth using reduced pressure. Int Endod J 31:63–66. doi: 10.1046/j.1365-2591.1998.t01-1-00117.x CrossRefPubMedGoogle Scholar
  36. 36.
    Oliver CM, Abbott PV (2001) Entrapped air and its effects on dye penetration of voids. Endod Dent Traumatol 7:74–78Google Scholar
  37. 37.
    Boussetta F, Bal S, Romeas A, Boivin G, Magloire H, Farge P (2003) In vitro evaluation of apical microleakage following canal filling with a coated carrier system compared with lateral and thermomechanical gutta-percha condensation techniques. Int Endod J 36:367–371. doi: 10.1046/j.1365-2591.2003.00665.x CrossRefPubMedGoogle Scholar
  38. 38.
    Moshonov J, Stabholz A, Zyskind D, Sharlin E, Peretz B (2005) Acid-etched and Er:yttrium Al garnet laser-treated enamel for fissure sealants: a comparison of microleakage. Int J Paediatr Dent 15:205–209. doi: 10.1111/j.1365-263X.2005.00624.x CrossRefPubMedGoogle Scholar
  39. 39.
    Taschieri S, Del Fabbro M, Francetti L, Testori T (2004) Effect of root-end resection and root end filling on apical leakage in the presence of core-carrier root canal obturation. Int Endod J 37:477–482. doi: 10.1111/j.1365-2591.2004.00827.x CrossRefPubMedGoogle Scholar
  40. 40.
    De Bruyne MAA, De Bruyne RJE, Rosiers L, De Moor RJG (2005) Longitudinal study of three root-end filling materials by fluid transport method and by capillary flow porometry. Int Endod J 38:129–136. doi: 10.1111/j.1365-2591.2004.00919.x CrossRefPubMedGoogle Scholar
  41. 41.
    Juhasz A, Verdes E, Tokes L, Kobor A, Dobo-Nagy C (2006) The influence of root canal shape on the sealing ability of two root canal sealers. Int Endod J 39:282–286. doi: 10.1111/j.1365-2591.2006.01079.x CrossRefPubMedGoogle Scholar
  42. 42.
    Miletic G, Prpic-Mehific T, Maruan A, Tambie-Andrauevic S, Pleuko Karlovic Z, Anić I (2002) Bacterial and fungal microleakage of AH26 and AH Plus root canal sealers. Int Endod J 35:428–432. doi: 10.1046/j.1365-2591.2002.00490.x CrossRefPubMedGoogle Scholar
  43. 43.
    Barthel CR, Moshonov J, Shuping G, Órstavik D (1999) Bacterial leakage versus dye leakage in obturated root canals. Int Endod J 32:370–375. doi: 10.1046/j.1365-2591.1999.00235.x Google Scholar
  44. 44.
    Von Fraunhofer JA, Klotz DA, Jones OJ (2005) Micro-leakage within endodontically treated teeth using a simplified root canal preparation technique: an in vitro study. Gen Dent 53:439–443Google Scholar
  45. 45.
    Hersek N, Canay S, Akça K, Çiftçi Y (2002) Comparison of microleakage properties of three different filling materials. An autoradiographic study. J Oral Rehabil 29:1212–1217. doi: 10.1046/j.1365-2842.2002.00972.x CrossRefPubMedGoogle Scholar
  46. 46.
    Huang D, Swanson E, Lin C, Schuman J, Stinson W, Chang W, Hee M, Flotte T, Gregory K, Puliafito C, Fujimoto JG (1991) Optical coherence tomography. Science 254:1178–1181. doi: 10.1126/science.1957169 CrossRefPubMedGoogle Scholar
  47. 47.
    Feldchtein F, Gelikonov V, Iksanov R, Gelikonov G, Kuranov R, Sergeev A, Gladkova N, Ourutina M, Reitze D, Warren J (1998) In vivo OCT imaging of hard and soft tissue of the oral cavity. Opt Express 3:239–250CrossRefPubMedGoogle Scholar
  48. 48.
    Otis LL, Everett MJ, Sathyam US, Colston BW Jr (2000) Optical coherence tomography: a new imaging technology for dentistry. J Am Dent Assoc 131:511–514PubMedGoogle Scholar
  49. 49.
    Amaechi BT, Podoleanu AG, Higham SM, Jackson DA (2003) Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries. J Biomed Opt 8:642–647Google Scholar
  50. 50.
    Shemesh H, van Soest G, Wu MK, van der Sluis LWM, Wesselink PR (2007) The ability of optical coherence tomography to characterize the root canal walls. J Endod 33:1369–1373. doi: 10.1016/j.joen.2007.06.022 CrossRefPubMedGoogle Scholar
  51. 51.
    Podoleanu AG, Dobre GM, Webb DJ, Jackson DA (1996) Coherence imaging by use of a Newton rings sampling function. Opt Lett 21:1789–1791. doi: 10.1364/OL.21.001789 CrossRefPubMedGoogle Scholar
  52. 52.
    Sinescu C, Negrutiu M, Todea C, Balabuc C, Filip L, Rominu R et al (2008) Quality assessment of dental treatments using en-face optical coherence tomography. J Biomed Opt 13:54–65. doi: 10.1117/1.2992593 CrossRefGoogle Scholar
  53. 53.
    Rosa CC, Rogers J, Pedro J, Rosen R, AGh P (2007) Multi-scan time domain OCT for retina imaging. Appl Opt 46:1795–1807. doi: 10.1364/AO.46.001795 CrossRefPubMedGoogle Scholar
  54. 54.
    AGh P, Rosen RB (2008) Combinations of techniques in imaging the retina with high resolution. Prog Retin Eye Res 27:464–499. doi: 10.1016/j.preteyeres.2008.03.002 CrossRefGoogle Scholar
  55. 55.
    Gutknecht N (2004) Der Fidelis Plus Laser von Fotona. Zahnaertztliche Indikationen, Parameter und Behandlungsmassnahmen. In: Endodontie, Laser Franz Medien GmbH, Germany, pp 26–29Google Scholar
  56. 56.
    Todea C, AGh P, Sinescu C, Bălăbuc C, Filip L, Negruţiu M (2008) OCT investigation of apical microleakage—a preliminary in vitro study. Lasers Surg Med S20 (Suppl):15Google Scholar
  57. 57.
    Sen BH, Wesselink PR, Turkun M (1995) The smear layer: a phenomenon in root-canal therapy. Int Endod J 28:141–148. doi: 10.1111/j.1365-2591.1995.tb00289.x CrossRefPubMedGoogle Scholar
  58. 58.
    Bayne S (2001) Bonding to dental substrates. In: Craig RG, Powers JM (eds) Restorative dental materials, 11th edn. Mosby, St. Louis, pp 260–262Google Scholar
  59. 59.
    Dederich DN, Zakarasien KL, Tulip J (1984) Scanning electron microscopic analysis of canal wall dentin following neodymium-yttrium-aluminium-garnet laser irradiation. J Endod 10:428–431. doi: 10.1016/S0099-2399(84)80264-2 CrossRefPubMedGoogle Scholar
  60. 60.
    Khan MA, Khan MF, Khan MW, Wakabayashi H, Matsumoto K (1997) Effect of laser treatment on the root canal of human teeth. Endod Dent Traumatol 13:139–145. doi: 10.1111/j.1600-9657.1997.tb00027.x CrossRefPubMedGoogle Scholar
  61. 61.
    Harashima T, Takeda FH, Kimura Y, Matsumoto K (1997) Effect of Nd:YAG laser irradiation for removal of intracanal wall dentin: hand versus laser treatment. Scanning Microsc 7:979–987Google Scholar
  62. 62.
    Youngson CC, Jones JCG, Fox K, Smith IS, Wood DJ, Gale M (1999) A fluid filtration and cleaning technique to assess microleakage associated with three dentin bonding systems. J Dent 27:223–233. doi: 10.1016/S0300-5712(98)00048-7 CrossRefPubMedGoogle Scholar
  63. 63.
    Orucoglu H, Sengun A, Yilmaz N (2005) Apical leakage of resin based root canal sealers with a new computerized fluid filtration meter. J Endod 31:886–890. doi: 10.1097/01.don.0000164134.79052.b3 CrossRefPubMedGoogle Scholar
  64. 64.
    Maltezos C, Glicjman G, Ezzo P, He J (2006) Comparison of the sealing of Resilon, Pro root MTA, and super-EBA as root-end filling materials: a bacterial leakage study. J Endod 32:324–327. doi: 10.1016/j.joen.2005.08.015 CrossRefPubMedGoogle Scholar
  65. 65.
    Xu Q, Fan MW, Fan B, Cheung GSP, Hu HL (2005) A new quantitative method using glucose for analysis of endodontic leakage. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 99:107–111. doi: 10.1016/j.tripleo.2004.06.006 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2009

Authors and Affiliations

  • Carmen Todea
    • 1
  • Cosmin Balabuc
    • 1
  • Cosmin Sinescu
    • 1
  • Laura Filip
    • 1
  • Cristina Kerezsi
    • 1
  • Mircea Calniceanu
    • 1
  • Meda Negrutiu
    • 1
  • Adrian Bradu
    • 2
  • Michael Hughes
    • 2
  • Adrian Gh. Podoleanu
    • 2
  1. 1.School of DentistryVictor Babes University of Medicine and Pharmacy of TimisoaraTimisoaraRomania
  2. 2.School of Physical SciencesUniversity of KentCanterburyUK

Personalised recommendations