Lasers in Medical Science

, 24:857 | Cite as

Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes

  • Ernesto Cesar Pinto Leal JuniorEmail author
  • Rodrigo Álvaro Brandão Lopes-Martins
  • Bruno Manfredini Baroni
  • Thiago De Marchi
  • Daiana Taufer
  • Débora Sgandella Manfro
  • Morgana Rech
  • Vanessa Danna
  • Douglas Grosselli
  • Rafael Abeche Generosi
  • Rodrigo Labat Marcos
  • Luciano Ramos
  • Jan Magnus Bjordal
Original Article


Our aim was to investigate the immediate effects of bilateral, 830 nm, low-level laser therapy (LLLT) on high-intensity exercise and biochemical markers of skeletal muscle recovery, in a randomised, double-blind, placebo-controlled, crossover trial set in a sports physiotherapy clinic. Twenty male athletes (nine professional volleyball players and eleven adolescent soccer players) participated. Active LLLT (830 nm wavelength, 100 mW, spot size 0.0028 cm2, 3–4 J per point) or an identical placebo LLLT was delivered to five points in the rectus femoris muscle (bilaterally). The main outcome measures were the work performed in the Wingate test: 30 s of maximum cycling with a load of 7.5% of body weight, and the measurement of blood lactate (BL) and creatine kinase (CK) levels before and after exercise. There was no significant difference in the work performed during the Wingate test (P > 0.05) between subjects given active LLLT and those given placebo LLLT. For volleyball athletes, the change in CK levels from before to after the exercise test was significantly lower (P = 0.0133) for those given active LLLT (2.52 U l−1 ± 7.04 U l−1) than for those given placebo LLLT (28.49 U l−1 ± 22.62 U l−1). For the soccer athletes, the change in blood lactate levels from before exercise to 15 min after exercise was significantly lower (P < 0.01) in the group subjected to active LLLT (8.55 mmol l−1 ± 2.14 mmol l−1) than in the group subjected to placebo LLLT (10.52 mmol l−1 ± 1.82 mmol l−1). LLLT irradiation before the Wingate test seemed to inhibit an expected post-exercise increase in CK level and to accelerate post-exercise lactate removal without affecting test performance. These findings suggest that LLLT may be of benefit in accelerating post-exercise recovery.


LLLT Skeletal muscle Skeletal muscle recovery Blood lactate Creatine kinase Muscle damage Sports 


  1. 1.
    Barnett A (2006) Using recovery modalities between training sessions in elite athletes: does it help? Sports Med 36:781–796. doi: 10.2165/00007256–200636090–00005 CrossRefPubMedGoogle Scholar
  2. 2.
    Westerblad H, Allen DG, Lannergren J (2002) Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci 17:17–21PubMedGoogle Scholar
  3. 3.
    Cheung K, Hume P, Maxwell L (2003) Delayed onset muscle soreness: treatment strategies and performance factors. Sports Med 33:145–164. doi: 10.2165/00007256–200333020–00005 CrossRefPubMedGoogle Scholar
  4. 4.
    Ahmaidi S, Granier P, Taoutaou Z et al (1996) Effects of active recovery on plasma lactate and anaerobic power following repeated intensive exercise. Med Sci Sports Exerc 28:450–456. doi: 10.1097/00005768–199604000–00009 PubMedGoogle Scholar
  5. 5.
    Martin NA, Zoeller RF, Robertson RJ et al (1998) The comparative effects of sports massage, active recovery, and rest in promoting blood lactate clearance after supramaximal leg exercise. J Athl Train 33:30–35PubMedGoogle Scholar
  6. 6.
    Baldari C (2004) Lactate removal during active recovery related to the individual anaerobic and ventilatory thresholds in soccer players. Eur J Appl Physiol 93:224–230. doi: 10.1007/s00421–004–1203–5 CrossRefPubMedGoogle Scholar
  7. 7.
    Howatson G, Gaze D, van Someren KA (2005) The efficacy of ice massage in the treatment of exercise-induced muscle damage. Scand J Med Sci Sports 15:416–422. doi: 10.1111/j.1600–0838.2005.00437.x CrossRefPubMedGoogle Scholar
  8. 8.
    Sellwood KL, Brukner P, Williams D et al (2007) Ice-water immersion and delayed-onset muscle soreness: a randomised controlled trial. Br J Sports Med 41:392–397. doi: 10.1136/bjsm.2006.033985 CrossRefPubMedGoogle Scholar
  9. 9.
    Weerapong P, Hume PA, Kolt GS (2005) The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sports Med 35:235–256. doi: 10.2165/00007256–200535030–00004 CrossRefPubMedGoogle Scholar
  10. 10.
    Coffey V, Leveritt M, Gill N (2004) Effect of recovery modality on 4-hour repeated treadmill running performance and changes in physiological variables. J Sci Med Sport 7:1–10. doi: 10.1016/S1440–2440(04)80038–0 CrossRefPubMedGoogle Scholar
  11. 11.
    Gill ND, Beaven CM, Cook C (2006) Effectiveness of post-match recovery strategies in rugby players. Br J Sports Med 40:260–263. doi: 10.1136/bjsm.2005.022483 CrossRefPubMedGoogle Scholar
  12. 12.
    Dowzer CN, Reilly T, Cable NT (1998) Effects of deep and shallow water running on spinal shrinkage. Br J Sports Med 32:44–48CrossRefPubMedGoogle Scholar
  13. 13.
    Mekjavic IB, Exner JA, Tesch PA et al (2000) Hyperbaric oxygen therapy does not affect recovery from delayed onset muscle soreness. Med Sci Sports Exerc 32:558–563. doi: 10.1097/00005768–200003000–00002 CrossRefPubMedGoogle Scholar
  14. 14.
    Baldwin Lanier A (2003) Use of nonsteroidal anti-inflammatory drugs following exercise-induced muscle injury. Sports Med 33:177–185. doi: 10.2165/00007256–200333030–00002 CrossRefPubMedGoogle Scholar
  15. 15.
    Lattier G, Millet GY, Martin A et al (2004) Fatigue and recovery after high-intensity exercise. Part II: Recovery interventions. Int J Sports Med 25:509–515. doi: 10.1055/s-2004–820946 CrossRefPubMedGoogle Scholar
  16. 16.
    Cairns SP (2006) Lactic acid and exercise performance: culprit or friend? Sports Med 36:279–291. doi: 10.2165/00007256–200636040–00001 CrossRefPubMedGoogle Scholar
  17. 17.
    Reilly T, Ekblom B (2005) The use of recovery methods post-exercise. J Sports Sci 23:619–627. doi: 10.1080/02640410400021302 CrossRefPubMedGoogle Scholar
  18. 18.
    Spierer DK, Goldsmith R, Baran DA et al (2004) Effects of active vs passive recovery on work performed during serial supramaximal exercise tests. Int J Sports Med 25:109–114. doi: 10.1055/s-2004–819954 CrossRefPubMedGoogle Scholar
  19. 19.
    Szumilak D, Sulowicz W, Walatek B (1998) Rhabdomyolysis: clinical features, causes, complications and treatment. Przegl Lek 55:274–279PubMedGoogle Scholar
  20. 20.
    Wolf PL, Lott JA, Nitti GJ et al (1987) Changes in serum enzymes, lactate, and haptoglobin following acute physical stress in international-class athletes. Clin Biochem 20:73–77. doi: 10.1016/S0009–9120(87)80102–9 CrossRefPubMedGoogle Scholar
  21. 21.
    Ide M, Tajima F, Furusawa K et al (1999) Wheelchair marathon racing causes striated muscle distress in individuals with spinal cord injury. Arch Phys Med Rehabil 80:324–327. doi: 10.1016/S0003–9993(99)90145–4 CrossRefPubMedGoogle Scholar
  22. 22.
    Boros-Hatfaludy S, Fekete G, Apor P (1986) Metabolic enzyme activity patterns in muscle biopsy samples in different athletes. Eur J Appl Physiol Occup Physiol 55:334–338. doi: 10.1007/BF02343809 CrossRefPubMedGoogle Scholar
  23. 23.
    MacDougall JD, Hicks AL, MacDonald JR et al (1998) Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol 84:2138–2142CrossRefPubMedGoogle Scholar
  24. 24.
    Klapcinska B, Iskra J, Poprzecki S et al (2001) The effects of sprint (300 m) running on plasma lactate, uric acid, creatine kinase and lactate dehydrogenase in competitive hurdlers and untrained men. J Sports Med Phys Fitness 41:306–311PubMedGoogle Scholar
  25. 25.
    Szabo A, Romvári R, Bogner P et al (2003) Metabolic changes induced by regular submaximal aerobic exercise in meat-type rabbits. Acta Vet Hung 51:503–512. doi: 10.1556/AVet.51.2003.4.8 CrossRefPubMedGoogle Scholar
  26. 26.
    Brancaccio P, Maffulli N, Limongelli FM (2007) Creatine kinase monitoring in sport medicine. Br Med Bull 81–82:209–230. doi: 10.1093/bmb/ldm014 CrossRefPubMedGoogle Scholar
  27. 27.
    Angelini C (2004) Limb-girdle muscular dystrophies: heterogeneity of clinical phenotypes and pathogenetic mechanisms. Acta Myol 23:130–136PubMedGoogle Scholar
  28. 28.
    Chow RT, Heller GZ, Barnsley L (2006) The effect of 300 mW, 830 nm laser on chronic neck pain: a double-blind, randomized, placebo-controlled study. Pain 124:201–210. doi: 10.1016/j.pain.2006.05.018 CrossRefPubMedGoogle Scholar
  29. 29.
    Gur A, Karakoç M, Nas K et al (2002) Efficacy of low power laser therapy in fibromyalgia: a single-blind, placebo-controlled trial. Lasers Med Sci 17:57–61. doi: 10.1007/s10103–002–8267–4 CrossRefPubMedGoogle Scholar
  30. 30.
    Lopes-Martins RA, Marcos RL, Leonardo PS et al (2006) Effect of low-level laser (Ga-Al-As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J Appl Physiol 101:283–288. doi: 10.1152/japplphysiol.01318.2005 CrossRefPubMedGoogle Scholar
  31. 31.
    Enwemeka CS (2001) Attenuation and penetration depth of red 632.8 nm and invisible infrared 904 nm light in soft tissues. Laser Ther 13:95–101Google Scholar
  32. 32.
    Avni D, Levkovitz S, Maltz L et al (2005) Protection of skeletal muscles from ischemic injury: low-level laser therapy increases antioxidant activity. Photomed Laser Surg 23:273–277. doi: 10.1089/pho.2005.23.273 CrossRefPubMedGoogle Scholar
  33. 33.
    Rizzi CF, Mauriz JL, Freitas Corrêa DS et al (2006) Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. Lasers Surg Med 38:704–713. doi: 10.1002/lsm.20371 CrossRefPubMedGoogle Scholar
  34. 34.
    Leal Junior ECP, Lopes-Martins R, Dalan F et al (2008) Effect of 655 nm low level laser therapy (LLLT) in exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg 26:419–424. doi: 10.1089/pho.2007.2160 CrossRefPubMedGoogle Scholar
  35. 35.
    Leal Junior ECP, Lopes-Martins R, Vanin A et al (2008) Effect of 830 nm low level laser therapy (LLLT) in exercise-induced skeletal muscle fatigue in humans (in press). Lasers Med Sci. doi: 10.1007/s10103–008–0592–9
  36. 36.
    Xu X, Zhao X, Liu TC, Pan H (2008) Low-intensity laser irradiation improves the mitochondrial dysfunction of C2C12 induced by electrical stimulation. Photomed Laser Surg 26:197–202. doi: 10.1089/pho.2007.2125 CrossRefPubMedGoogle Scholar
  37. 37.
    Tullberg M, Alstergren PJ, Ernberg MM (2003) Effects of low-power laser exposure on masseter muscle pain and microcirculation. Pain 105:89–96. doi: 10.1016/S0304–3959(03)00166–0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2008

Authors and Affiliations

  • Ernesto Cesar Pinto Leal Junior
    • 1
    • 2
    • 3
    Email author
  • Rodrigo Álvaro Brandão Lopes-Martins
    • 4
  • Bruno Manfredini Baroni
    • 1
    • 2
  • Thiago De Marchi
    • 1
    • 5
  • Daiana Taufer
    • 5
  • Débora Sgandella Manfro
    • 5
  • Morgana Rech
    • 5
  • Vanessa Danna
    • 5
  • Douglas Grosselli
    • 1
    • 7
  • Rafael Abeche Generosi
    • 1
    • 2
    • 6
  • Rodrigo Labat Marcos
    • 4
  • Luciano Ramos
    • 4
  • Jan Magnus Bjordal
    • 3
    • 8
  1. 1.Laboratory of Human Movement (LMH), Sports Medicine Institute (IME)University of Caxias do Sul (UCS)Caxias do SulBrazil
  2. 2.Sports Medicine Institute (IME)University of Caxias do Sul (UCS)Caxias do SulBrazil
  3. 3.Section for Physiotherapy Science, Institute of Public Health and Primary Health CareUniversity of BergenBergenNorway
  4. 4.Laboratory of Pharmacology and Phototherapy of Inflammation, Department of Pharmacology, Institute of Biomedical SciencesUniversity of São Paulo (USP)São PauloBrazil
  5. 5.Faculty of PhysiotherapyUniversity of Caxias do Sul (UCS)Caxias do SulBrazil
  6. 6.Federal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  7. 7.Faculty of Physical EducationUniversity of Caxias do Sul (UCS)Caxias do SulBrazil
  8. 8.Institute for Physical TherapyBergen University CollegeBergenNorway

Personalised recommendations