Advertisement

Lasers in Medical Science

, Volume 24, Issue 5, pp 703–713 | Cite as

The effect of low-level laser irradiation on dog spermatozoa motility is dependent on laser output power

  • M. I. Corral-BaquésEmail author
  • M. M. Rivera
  • T. Rigau
  • J. E. Rodríguez-Gil
  • J. Rigau
Original Article

Abstract

Biological tissues respond to low-level laser irradiation and so do dog spermatozoa. Among the main parameters to be considered when a biological tissue is irradiated is the output power. We have studied the effects on sperm motility of 655 nm continuous wave diode laser irradiation at different output powers with 3.34 J (5.97 J/cm2). The second fraction of fresh dog sperm was divided into five groups: control, and four to be irradiated with an average output power of 6.8 mW, 15.4 mW, 33.1 mW and 49.7 mW, respectively. At 0 min and 45 min after irradiation, pictures were taken and a computer aided sperm analysis (CASA) performed to analyse different motility parameters. The results showed that different output powers affected dog semen motility parameters differently. The highest output power showed the most intense effects. Significant changes in the structure of the motile sperm subpopulation were linked to the different output powers used.

Keywords

Semen quality Low-power laser 

Notes

Acknowledgements

We would like to thank SORISA for providing us with the laser and the power meter equipment.

References

  1. 1.
    Almeida Lopes L, Rigau J, Amaro Zângaro R, Guidugli Neto J, Martins Marques Jaeger M (2001) Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29:179–184. doi: 10.1002/lsm.1107 PubMedCrossRefGoogle Scholar
  2. 2.
    Hawkins D, Abrahamse H (2006) Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts. Photomed Laser Surg 24:705–714. doi: 10.1089/pho.2006.24.705 PubMedCrossRefGoogle Scholar
  3. 3.
    Demidova-Rice TN, Salomatina EV, Yaroslavsky AN, Herman IM, Hamblin MR (2007) Low-level light stimulates excisional wound healing in mice. Lasers Surg Med 39:706–715. doi: 10.1002/lsm.20549 PubMedCrossRefGoogle Scholar
  4. 4.
    Corazza AV, Jorge J, Kurachi C, Bagnato VS (2007) Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed Laser Surg 25:102–106. doi: 10.1089/pho.2006.2011 PubMedCrossRefGoogle Scholar
  5. 5.
    Nicolau RA, Martinez MS, Rigau J, Tomas J (2004) Effect of low power 655 nm diode laser irradiation on the neuromuscular junctions of the mouse diaphragm. Lasers Surg Med 34:277–284PubMedCrossRefGoogle Scholar
  6. 6.
    Corral-Baqués MI, Rigau T, Rivera MM, Rodríguez-Gil JE, Rigau J (2005) Effect of 655 nm diode laser on dog sperm motility. Lasers Med Sci 20:28–34. doi: 10.1007/s10103-005-0332-3 PubMedCrossRefGoogle Scholar
  7. 7.
    Mushayandebvu T, Magier T, Murnick T, Bonder T, Weiss G, Colon J (1995) Sperm membrane response to hypo-osmotic challenge after laser optical trapping at high power. J Soc Gynecol Investig 2:370. doi: 10.1016/1071-5576(95)94567-E CrossRefGoogle Scholar
  8. 8.
    Ebner T, Moser M, Yaman C, Sommergruber M, Tews G (2002) Successful birth after laser assisted immobilization of spermatozoa before intracytoplasmatic injection. Fertil Steril 78:417–418. doi: 10.1016/S0015-0282(02)03208-9 PubMedCrossRefGoogle Scholar
  9. 9.
    Nascimento JM, Shi LZ, Meyers S, Gagneux P, Loskutoff NM, Botvinick EL, Berns MW (2008) The use of optical tweezers to study sperm competition and motility in primates. J R Soc Interface 5:297–302 doi: 10.1098/rsif.2007.1118 PubMedCrossRefGoogle Scholar
  10. 10.
    Marín ML, Velez JR (1990) Efectos de la irradiación laser Helio Neon en semen bovino (minor thesis), Antioquia (Medellín), Facultad de Medicina Veterinaria y de Zootecnia, Universidad de AntioquiaGoogle Scholar
  11. 11.
    Iaffaldano N, Meluzzi A, Manchisi A, Passarella S (2005) Improvement of stored turkey semen quality as a result of He–Ne laser irradiation. Anim Reprod Sci 854):317–325PubMedGoogle Scholar
  12. 12.
    Zan-Bar T, Bartoov B, Segal R, Yehuda R, Lavi R, Lubart R, Avtalion RR (2005) Influence of visible light and ultraviolet irradiation on motility and fertility of mammalian and fish sperm. Photomed Laser Surg 23:549–555. doi: 10.1089/pho.2005.23.549 PubMedCrossRefGoogle Scholar
  13. 13.
    Lubart R, Breitbart H, Sofer Y, Cohen N, Friedmann H, Lavie R (2003) Light irradiation of sperm cells stimulates in-vitro fertilization, Joint International Laser Conference, Edinburgh (Scotland), pp 21–23Google Scholar
  14. 14.
    Holt W, Watson P, Curry M, Holt C (1994) Reproducibility of computer-aided semen analysis: comparison of five different systems in a practical workshop. Fertil Steril 62:1277–1282PubMedGoogle Scholar
  15. 15.
    Mortimer ST (2000) CASA – practical aspects. J Androl 21:515–524PubMedGoogle Scholar
  16. 16.
    Abaigar T, Holt WV, Harrison RAP, del Barrio G (1999) Sperm subpopulations in boar (Sus scrofa) and gazelle (Gazella dama mhorr) semen as revealed by pattern analysis of computer-assisted motility assessments. Biol Reprod 60:32–41. doi: 10.1095/biolreprod60.1.32 PubMedCrossRefGoogle Scholar
  17. 17.
    Holt W (1996) Can we predict fertility rates? Making sense of sperm motility. Reprod Domest Anim Physiol Pathol Biotechnol 31:1–342Google Scholar
  18. 18.
    Quintero-Moreno A (2003) Estudio sobre la dinámica de poblaciones espermáticas en semen de caballo, cerdo y conejo. Bellaterra Octubre 2003,doctoral thesisGoogle Scholar
  19. 19.
    Quintero-Moreno A, Rigau T, Rodriguez-Gil JE (2004) Regression analysis and motile sperm subpopulation structure study as improving tools in boar semen quality analysis. Theriogenology 61:673–690. doi: 10.1016/S0093-691X(03)00248-6 PubMedCrossRefGoogle Scholar
  20. 20.
    Quintero-Moreno A, Rigau T, Rodriguez-Gil JE (2007) Multivariate cluster analysis regression procedures as tools to identify motile sperm subpopulation in rabbit semen and predict semen fertility and litter. Reprod Domest Anim 42:312–319. doi: 10.1111/j.1439-0531.2006.00785.x PubMedCrossRefGoogle Scholar
  21. 21.
    Rivera MM, Quintero-Moreno A, Barrera X, Palomo MJ, Rigau T, Rodríguez-Gil JE (2005) Natural Mediterranean photoperiod does not affect the main parameters of boar-semen quality analysis. Theriogenology 64:934–946Google Scholar
  22. 22.
    Feldman EC, Nelson RW (1996) Clinical and diagnostic evaluation of the male reproductive tract. In: Canine and feline endocrinology and reproduction, 2nd edn. Saunders, Philadelphia, pp: 673–690Google Scholar
  23. 23.
    Zaneveld LJD, Polakoski KL (1977) Collection and physical examination of the ejaculate. In: Hafez ESE (ed) Techniques of human andrology, chap 6. Elsevier/North-Holland Biomedical PressGoogle Scholar
  24. 24.
    Kumi-Diaka J (1993) Subjecting canine semen to the hypo-osmotic test. Theriogenology 39:1279–1289. doi: 10.1016/0093-691X(93)90230-3 CrossRefGoogle Scholar
  25. 25.
    England GC, Plummer JM (1993) Hypo-osmotic swelling of dog spermatozoa. J Reprod Fertil Suppl 47:261–270PubMedGoogle Scholar
  26. 26.
    Rodríguez-Gil JE, Montserrat A, Rigau T (1994) Effects of hypoosmotic incubation on acrosome and tail structure on canine spermatozoa. Theriogenology 42:815–829. doi: 10.1016/0093-691X(94)90450-W PubMedCrossRefGoogle Scholar
  27. 27.
    Kumi-Diaka J, Badtram G (1994) Effect of storage on sperm membrane integrity and other functional characteristics of canine spermatozoa: in vitro bioassay for canine semen. Theriogenology 41:1355–1366. doi: 10.1016/0093-691X(94)90187-N PubMedCrossRefGoogle Scholar
  28. 28.
    Núñez-Martínez I, Moran JM, Peña FJ (2006) A three-step statistical procedure to identify sperm kinematic subpopulations in canine ejaculates: changes after cryopreservation. Reprod Domest Anim 41:408–415. doi: 10.1111/j.1439-0531.2006.00685.x PubMedCrossRefGoogle Scholar
  29. 29.
    Amat A, Rigau J, Waynant RW, Ilev IK, Tomas J, Anders JJ (2005) Modification of the intrinsic fluorescence and the biochemical behavior of ATP after irradiation with visible and near-infrared laser light. J Photochem Photobiol B 81:26–32. doi: 10.1016/j.jphotobiol.2005.05.012 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2008

Authors and Affiliations

  • M. I. Corral-Baqués
    • 1
    Email author
  • M. M. Rivera
    • 2
  • T. Rigau
    • 2
  • J. E. Rodríguez-Gil
    • 2
  • J. Rigau
    • 1
  1. 1.Post-Degree Laser Medical StudyRovira i Virgili UniversityReusSpain
  2. 2.Animal Reproduction Unit, Faculty of Veterinary MedicineAutonomous University of BarcelonaBellaterraSpain

Personalised recommendations