Advertisement

Lasers in Medical Science

, Volume 24, Issue 4, pp 539–547 | Cite as

Effect of equal daily doses achieved by different power densities of low-level laser therapy at 635 nm on open skin wound healing in normal and corticosteroid-treated rats

  • Peter GálEmail author
  • Michal Mokrý
  • Boris Vidinský
  • Róbert Kilík
  • Filip Depta
  • Magdaléna Harakaľová
  • František Longauer
  • Štefan Mozeš
  • Ján Sabo
Original Article

Abstract

Optimal parameters of low-level laser therapy (LLLT) for wound healing are still discussed. Hence, our study was aimed to compare effects of different power densities of LLLT at 635 nm in rats. Four, round, full-thickness, skin wounds were made on the backs of 48 rats that were divided into two groups (non-steroid laser-treated and steroid laser-treated). Three wounds were stimulated daily with a diode laser (daily dose 5 J/cm2) each with different power density (1 mW/cm2, 5 mW/cm2, and 15 mW/cm2), whereas the fourth wound served as a control. Two days, 6 days, and 14 days after surgery, eight animals from each group were killed and samples were removed for histological evaluation. In the non-steroid laser-treated rats, significant acceleration of epithelization and collagen synthesis 2 days and 6 days after surgery was observed in stimulated wounds. In steroid laser-treated rats, 2 days and 14 days after surgery, a decreased leucocyte/macrophage ratio and a reduction in the area of granulation tissue were recorded, respectively. In conclusion, LLLT, by the method we used, improved wound healing in the non-steroid laser-treated rats, but it was useless after corticosteroid treatment.

Keywords

Daily dose of 5 J/cm2 Low-level laser therapy Wound healing Different power densities 

Notes

Acknowledgments

We thank Magdaléna Majnušová for preparing the histological sections. Also, we thank Marek Antol, Martin Novotný, Lenka Kostičová, and Eva Kožejová for their useful technical assistance. In addition, we thank Faiza Hussain for editorial help in preparing this manuscript. This study was partially supported by the Slovak Grant Agency of the Ministry of Education and Slovak Academy of Sciences (VEGA, 1/3361/06 and 1/4228/07). We are grateful to U.S. Steel Košice, Slovak Republic, for buying us the Olympus BX51 microscope.

References

  1. 1.
    Toporcer T, Radoňak J (2006) Vacuum assisted wound closure—overview of lesson and applications. Cas Lek Cesk 145:702–707PubMedGoogle Scholar
  2. 2.
    Milgram J, Shahar R, Levin-Harrus T, Kass P (2004) The effect of short, high intensity magnetic field pulses on the healing of skin wounds in rats. Bioelectromagnetics 25:271–277. doi: 10.1002/bem.10194 PubMedCrossRefGoogle Scholar
  3. 3.
    Whelan HT, Smits RL Jr, Buchman EV, Whelan NT, Turner SG, Margolis DA et al (2001) Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg 19:305–314. doi: 10.1089/104454701753342758 PubMedCrossRefGoogle Scholar
  4. 4.
    Elwakil TF (2007) An in-vivo experimental evaluation of He-Ne laser photostimulation in healing Achilles tendons. Lasers Med Sci 22:53–59. doi: 10.1007/s10103–006–0423–9 PubMedCrossRefGoogle Scholar
  5. 5.
    Anstead GM (1998) Steroids, retinoids and wound healing. Adv Wound Care 11:277–285PubMedGoogle Scholar
  6. 6.
    Pessoa ES, Melhado RM, Theodoro LH, Garcia VG (2004) A histologic assessment of the influence of low-intensity laser therapy on wound healing in steroid-treated animals. Photomed Laser Surg 22:199–204. doi: 10.1089/1549541041438533 PubMedCrossRefGoogle Scholar
  7. 7.
    Rogers CC, Hanaway M, Alloway RR, Alexander JW, Boardman RE, Trofe J et al (2005) Corticosteroid avoidance ameliorates lymphocele formation and wound healing complications associated with sirolimus therapy. Transplant Proc 37:795–797. doi: 10.1016/j.transproceed.2004.12.076 PubMedCrossRefGoogle Scholar
  8. 8.
    Iijima K, Shimovama N, Shimovama M, Yamamoto T, Shimizu T, Mizuguchi T (1989) Effect of repeated irradiation of low-power He-Ne laser in pain relief from postherpetic neuralgia. Clin J Pain 5:271–274PubMedCrossRefGoogle Scholar
  9. 9.
    Kreisler MB, Haj HA, Noroozi N, Willershausen B (2004) Efficacy of low level laser therapy in reducing postoperative pain after endodontic surgery—a randomized double blind clinical study. Int J Oral Maxillofac Surg 33:38–41 doi: 10.1054/ijom.2002.0449 PubMedCrossRefGoogle Scholar
  10. 10.
    Nakaji S, Shiroto C, Yodono M, Umeda T, Liu Q (2005) Retrospective study of adjunctive diode laser therapy for pain attenuation in 662 patients: detailed analysis by questionnaire. Photomed Laser Surg 23:60–65. doi: 10.1089/pho.2005.23.60 PubMedCrossRefGoogle Scholar
  11. 11.
    Schindl A, Heinze G, Schindl M, Pernerstorfer-Schon H, Schindl L (2002) Systemic effects of low-intensity laser irradiation on skin microcirculation in patients with diabetic microangiopathy. Microvasc Res 64:240–246. doi: 10.1006/mvre.2002.2429 PubMedCrossRefGoogle Scholar
  12. 12.
    Toida M, Watanabe F, Goto K, Shibata T (2003) Usefulness of low-level laser for control of painful stomatitis in patients with hand-foot-and-mouth disease. J Clin Laser Med Surg 21:363–367 doi: 10.1089/104454703322650176 PubMedCrossRefGoogle Scholar
  13. 13.
    Gál P, Vidinský B, Toporcer T, Mokrý M, Mozeš Š, Longauer F et al (2006) Histological assessment of the effect of laser irradiation on skin wound healing in rats. Photomed Laser Surg 24:480–488. doi: 10.1089/pho.2006.24.480 PubMedCrossRefGoogle Scholar
  14. 14.
    Stadler I, Lanzafame RJ, Evans R, Narayan V, Dailey B, Buehner N et al (2001) 830 nm irradiation increases the wound tensile strength in a diabetic murine model. Lasers Surg Med 28:220–226. doi: 10.1002/lsm.1042 PubMedCrossRefGoogle Scholar
  15. 15.
    Damante CA, Greghi SL, Sant’Ana AC, Passanezi E, Taga R (2004) Histomorphometric study of the healing of human oral mucosa after gingivoplasty and low-level laser therapy. Lasers Surg Med 35:377–384 doi: 10.1002/lsm.20111 PubMedCrossRefGoogle Scholar
  16. 16.
    Lagan KM, Clements BA, McDonough S, Baxter GD (2001) Low intensity laser therapy (830 nm) in the management of minor postsurgical wounds: a controlled clinical study. Lasers Surg Med 28:27–32. doi: 10.1002/1096–9101(2001)28:1<27::AID-LSM1013>3.0.CO;2–4 PubMedCrossRefGoogle Scholar
  17. 17.
    Lundeberg T, Malm M (1991) Low-power HeNe laser treatment of venous leg ulcers. Ann Plast Surg 27:537–539 doi: 10.1097/00000637–199112000–00004 PubMedCrossRefGoogle Scholar
  18. 18.
    Núñez SC, Nogueira GE, Ribeiro MS, Garcez AS, Lage-Marques JL (2004) He-Ne laser effects on blood microcirculation during wound healing: a method of in vivo study through laser Doppler flowmetry. Lasers Surg Med 35:363–368. doi: 10.1002/lsm.20109 PubMedCrossRefGoogle Scholar
  19. 19.
    Petersen SL, Botes C, Olivier A, Guthrie AJ (1999) The effect of low level laser therapy (LLLT) on wound healing in horses. Equine Vet J 31:228–231PubMedCrossRefGoogle Scholar
  20. 20.
    Schlager A, Oehler K, Huebner KU, Schmuth M, Spoetl L (2000) Healing of burns after treatment with 670 nm low-power laser light. Plast Reconstr Surg 105:1635–1639. doi: 10.1097/00006534–200004050–00006 PubMedCrossRefGoogle Scholar
  21. 21.
    Tuner J, Hode L (1999) Low-level laser therapy—clinical practice and scientific background. Spjutvägen, Prima BooksGoogle Scholar
  22. 22.
    Kana JS, Hutschenreiter G, Haina D, Waidelich W (1981) Effect of low-power density laser radiation on healing of open skin wounds in rats. Arch Surg 116:293–296PubMedGoogle Scholar
  23. 23.
    Bisht D, Gupta SC, Misra V, Mital VP, Sharma P (1994) Effect of low intensity laser radiation on healing of open skin wounds in rats. Indian J Med Res 100:43–46PubMedGoogle Scholar
  24. 24.
    Gál P, Kilík R, Špaková T, Pataky F, Sabo J, Pomfy M et al (2005) He-Ne laser irradiation accelerates inflammatory phase and epithelization of skin wound healing in rats. Biologia 60:691–696Google Scholar
  25. 25.
    Hawkins DH, Abrahamse H (2006) The role of laser fluence in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium-neon laser irradiation. Lasers Surg Med 38:74–83. doi: 10.1002/lsm.20271 PubMedCrossRefGoogle Scholar
  26. 26.
    Houreld NN, Abrahamse H (2007) Laser light influences cellular viability and proliferation in diabetic-wounded fibroblast cells in a dose- and wavelength-dependent manner. Lasers Med Sci 23:11–18. doi: 10.1007/s10103–007–0445-y PubMedCrossRefGoogle Scholar
  27. 27.
    Langer H, Lange W (1992) Comparison of transmission and absorption of HeNe laser and infrared light in human tissue. AKU 20:19–24Google Scholar
  28. 28.
    Moore P, Ridgway TD, Higbee RG, Howard EW, Lucroy MD (2005) Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro. Lasers Surg Med 36:8–12. doi: 10.1002/lsm.20117 PubMedCrossRefGoogle Scholar
  29. 29.
    Schindl A, Schindl M, Pernerstorfer-Schon H, Schindl L (2000) Low intensity laser therapy: a review. J Investig Med 48:312–326PubMedGoogle Scholar
  30. 30.
    Motlik J, Klima J, Dvorankova B, Smetana K Jr (2007) Porcine epidermal stem cells as a biomedical model for wound healing and normal/malignant epithelial cell propagation. Theriogenology 67:105–111. doi: 10.1016/j.theriogenology.2006.09.018 PubMedCrossRefGoogle Scholar
  31. 31.
    do Nascimento PM, Pinheiro AL, Salgado MA, Ramalho LM (2004) A preliminary report on the effect of laser therapy on the healing of cutaneous surgical wounds as a consequence of an inversely proportional relationship between wavelength and intensity: histological study in rats. Photomed Laser Surg 22:513–518. doi: 10.1089/pho.2004.22.513 PubMedCrossRefGoogle Scholar
  32. 32.
    Karu TI, Afanasyeva NI, Kolyakov SF, Pyatibrat LV, Welser L (2001) Changes in absorbance of monolayer of living cells induced by laser radiation at 633, 670 and 820 nm. IEEE J Quantum Electron 7:982–988. doi: 10.1109/2944.983303 CrossRefGoogle Scholar
  33. 33.
    Hædersdal M, Poulsen T, Wulf HC (1993) Laser induced wounds and scarring modified by antiinflammatory drugs: a murine model. Lasers Surg Med 13:55–61. doi: 10.1002/lsm.1900130111 PubMedCrossRefGoogle Scholar
  34. 34.
    de Araújo CE, Ribeiro MS, Favaro R, Zezell DM, Zorn TM (2007) Ultrastructural and autoradiographical analysis show a faster skin repair in He-Ne laser-treated wounds. J Photochem Photobiol B 86:87–96. doi: 10.1016/j.jphotobiol.2006.08.006 PubMedCrossRefGoogle Scholar
  35. 35.
    Salmela K (1981) Comparison of the effects of methylprednisolone and hydrocortisone on granulation tissue development. An experimental study in rat. Scand J Plast Reconstr Surg 15:87–91. doi: 10.3109/02844318109103419 PubMedCrossRefGoogle Scholar
  36. 36.
    Rochkind S, Rousso M, Nissan M, Villarreal M, Barr-Nea L, Rees DG (1989) Systemic effects of low-power laser irradiation on the peripheral and central nervous system, cutaneous wounds, and burns. Lasers Surg Med 9:174–182. doi: 10.1002/lsm.1900090214 PubMedCrossRefGoogle Scholar
  37. 37.
    Reddy GK (2003) Comparison of the photostimulatory effects of visible He-Ne and infrared Ga-As lasers on healing impaired diabetic rat wounds. Lasers Surg Med 33:344–351. doi: 10.1002/lsm.10227 PubMedCrossRefGoogle Scholar
  38. 38.
    Kawalec JS, Hetherington VJ, Pfennigwerth TC, Dockery DS, Dolce M (2004) Effect of a diode laser on wound healing by using diabetic and nondiabetic mice. J Foot Ankle Surg 43:214–220. doi: 10.1053/j.jfas.2004.05.004 PubMedCrossRefGoogle Scholar
  39. 39.
    Ribeiro MS, Silva DF, Maldonado EP, de Rossi W, Zezell DM (2002) Effects of 1047-nm neodymium laser radiation on skin wound healing. J Clin Laser Med Surg 20:37–40. doi: 10.1089/104454702753474995 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2008

Authors and Affiliations

  • Peter Gál
    • 1
    Email author
  • Michal Mokrý
    • 1
  • Boris Vidinský
    • 1
  • Róbert Kilík
    • 2
  • Filip Depta
    • 1
  • Magdaléna Harakaľová
    • 1
  • František Longauer
    • 3
  • Štefan Mozeš
    • 4
  • Ján Sabo
    • 1
  1. 1.Department of Medical BiophysicsPavol Jozef Šafárik UniversityKošiceSlovak Republic
  2. 2.1st Department of SurgeryPavol Jozef Šafárik University and Louise Pasteur Faculty HospitalKošiceSlovak Republic
  3. 3.Department of Forensic MedicinePavol Jozef Šafárik UniversityKošiceSlovak Republic
  4. 4.Institute of Animal PhysiologySlovak Academy of SciencesKošiceSlovak Republic

Personalised recommendations